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Global agriculture production is challenged by increasing demands from rising
population and a changing climate, which may be alleviated through development of
genetically improved crop cultivars. Research into increasing photosynthetic energy
conversion efficiency has proposed many strategies to improve production but have
yet to yield real-world solutions, largely because of a phenotyping bottleneck. Partial
least squares regression (PLSR) is a statistical technique that is increasingly used
to relate hyperspectral reflectance to key photosynthetic capacities associated with
carbon uptake (maximum carboxylation rate of Rubisco, Vc,max) and conversion
of light energy (maximum electron transport rate supporting RuBP regeneration,
Jmax) to alleviate this bottleneck. However, its performance varies significantly across
different plant species, regions, and growth environments. Thus, to cope with the
heterogeneous performances of PLSR, this study aims to develop a new approach
to estimate photosynthetic capacities. A framework was developed that combines six
machine learning algorithms, including artificial neural network (ANN), support vector
machine (SVM), least absolute shrinkage and selection operator (LASSO), random
forest (RF), Gaussian process (GP), and PLSR to optimize high-throughput analysis
of the two photosynthetic variables. Six tobacco genotypes, including both transgenic
and wild-type lines, with a range of photosynthetic capacities were used to test the
framework. Leaf reflectance spectra were measured from 400 to 2500 nm using a high-
spectral-resolution spectroradiometer. Corresponding photosynthesis vs. intercellular
CO2 concentration response curves were measured for each leaf using a leaf gas-
exchange system. Results suggested that the mean R2 value of the six regression
techniques for predicting Vc,max (Jmax) ranged from 0.60 (0.45) to 0.65 (0.56) with the
mean RMSE value varying from 47.1 (40.1) to 54.0 (44.7) µmol m−2 s−1. Regression
stacking for Vc,max (Jmax) performed better than the individual regression techniques
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with increases in R2 of 0.1 (0.08) and decreases in RMSE by 4.1 (6.6) µmol m−2 s−1,
equal to 8% (15%) reduction in RMSE. Better predictive performance of the regression
stacking is likely attributed to the varying coefficients (or weights) in the level-2 model
(the LASSO model) and the diverse ability of each individual regression technique to
utilize spectral information for the best modeling performance. Further refinements can
be made to apply this stacked regression technique to other plant phenotypic traits.

Keywords: photosynthesis, high-throughput phenotyping, machine learning, stacked regression, gas exchange
system

INTRODUCTION

Increasing demands for food, fiber, and fuel caused by rising
human population and global affluence will be a burden to
environment sustainability over the next several decades. These
increasing demands are likely to be challenged further with the
world’s shrinking farmlands (Sayer et al., 2013; Ort et al., 2015)
and with climate change (Tester and Langridge, 2010). Among
other improvements, development of high photosynthetically
efficient crop cultivars is required to overcome these challenges
(Tester and Langridge, 2010). Although crop yields have
increased over the last several decades, this is achieved in the
Green Revolution which are diminishing with time (Parry et al.,
2011). Photosynthesis as a process leaves significant room for
improvement, which can bolster crop yields (Long et al., 2006;
Zhu et al., 2008). Thus, major research efforts are underway
to increase photosynthetic energy conversion efficiency by
engineering photosynthetic pathways (Yokota and Shigeoka,
2008; Ducat and Silver, 2012; Ort et al., 2015) and exploiting
mechanisms underlying natural variation of photosynthesis
(Flood et al., 2011; Lawson et al., 2012).

Altering the photosynthetic capacity of plants may lead to
higher productivity, but assessing the potential to optimize
photosynthesis, or to measure the underlying natural variation
in multiple plots representing diverse genotypes requires careful
and comprehensive phenotyping under field conditions (Furbank
and Tester, 2011). High-throughput phenotyping using non-
invasive imaging sensors offers a non-destructive, rapid, and
inexpensive way to characterize phenotypic traits for individual
plants (Finkel, 2009; Großkinsky et al., 2015). However,
compared with high-throughput genotyping (Thomson, 2014),
plant phenotyping in a low-throughput manner has been a
bottleneck to the generation of improved crop varieties (Furbank
and Tester, 2011). Therefore, advances in both high-throughput
phenotyping platforms (HTPPs) and statistical techniques that
relate sensor measurements to phenotypic traits are needed to
enable capacity for rapid and accurate phenotyping to ensure
crop improvements.

Biochemical kinetic properties such as Vc,max (the maximum
rate of Rubisco-catalyzed carboxylation) and Jmax (maximum
electron transport rate supporting RuBP regeneration) are
critical variables in determining photosynthetic capacity
(Long and Bernacchi, 2003). These parameters with their
underlying temperature functions (Bernacchi et al., 2001,
2003) are used to parameterize the leaf photosynthesis model

(Farquhar et al., 1980) to predict photosynthetic rates over a
wide range of environmental conditions. Traditionally, these
parameters are acquired from in vivo measurements using
commercial gas exchange systems (Long and Bernacchi, 2003)
fit to mechanistically defined photosynthesis models (Farquhar
et al., 1980; Sharkey et al., 2007). However, measurements from
gas exchange systems are time-consuming, cost-prohibitive, and
labor-intensive, making it difficult to phenotype photosynthesis
for large numbers of plants in a short time. The emergence
of HTPPs in recent years suggests opportunities to rapidly
measure leaf level photosynthetic information for thousands of
individual plants. Imaging techniques currently used in HTPPs
include visible light (RGB), fluorescence, thermal, 3D (e.g.,
light detection and ranging), tomographic, and hyperspectral
imaging (HSI) (Fiorani et al., 2012; Deery et al., 2014; Li et al.,
2014). Among these techniques, HSI is deemed as one of the
most effective technologies to predict physiological status and
stress related response of crops in a high-throughput manner
at different scales (Mahlein et al., 2012; Matsuda et al., 2012;
Mutka and Bart, 2014; Sytar et al., 2017).

Inference of photosynthetic variables and other phenotypic
traits from hyperspectral reflectance entails the development of
calibration models relating spectral measurements and reference
data (e.g., Vc,max and Jmax, derived with gas exchange systems).
Required by model calibrations, a representative sub-sample
of a complete data set in terms of range of spectral variation
treated with appropriate pre-processing techniques should be
selected (Montes et al., 2007; Cabrera-Bosquet et al., 2012).
In model calibration phase, empirical models used to correlate
spectral information with ground truth data can be diverse.
For most HSI studies, vegetation indices that associate two
or more spectral bands with specific biological parameters of
plants/crops are commonly derived for assessing and quantifying
phenotypic traits (Fiorani et al., 2012). As such, simple
correlation, regression, and classification techniques rather than
sophisticated mathematical models can help achieve research
goals, for example to characterize plant responses to abiotic
and biotic factors (Rumpf et al., 2010; Kim et al., 2011;
Behmann et al., 2014). In contrast, to relate photosynthetic
capacities with complete reflectance spectra, it is necessary to
use statistical models that have both powerful feature extraction
ability and data inference ability. For example, partial least
squares regression (PLSR) (Geladi and Kowalski, 1986; Wold
et al., 2001) has been commonly used to estimate Vc,max
and Jmax at the leaf level from leaf-clip reflectance spectra
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(Serbin et al., 2012; Ainsworth et al., 2014; Yendrek et al., 2017;
Silva-Perez et al., 2018). These studies also showed that
wavebands used for estimating photosynthetic information fell
with spectral regions associated with leaf characteristics such as
water content, internal structure, dry mass, and chlorophylls.
However, the performance of PLSR in estimating photosynthetic
capacities varies significantly across different plant species,
regions, and growth environments.

To cope with the heterogeneous performances of PLSR
among different situations, it is necessary to explore other
powerful machine learning techniques. With appropriate feature
extraction, other statistical techniques such as artificial neural
network (ANN) regression (Specht, 1991), support vector
machine (SVM) regression (Cortes and Vapnik, 1995), least
absolute shrinkage and selection operator (LASSO) regression
(Tibshirani, 1996), random forest (RF) regression (Breiman,
2001), and Gaussian process (GP) regression (Williams and
Rasmussen, 2006) may achieve the similar, if not better, predictive
performance as PLSR in phenotyping photosynthetic variables.
However, there is a lack of understanding of the predictive
performance of individual machine learning-based regression
techniques and whether their ensemble would provide better
performances for quantifying photosynthetic variables in a high-
throughput manner. Therefore, the objectives of this study are
to test a series of regression techniques, including PLSR, and
compare the model performance of each individual regression
technique to that of stacking all the regression techniques in
high-throughput phenotyping photosynthetic capacities. Testing
these machine learning techniques on both wild and genetically
modified tobacco plants, we hypothesize that this stacked
regression framework may form a more general approach to
estimations of plant phenotypic traits of greater accuracy and
sensitivity than those from any single regression algorithm.

MATERIALS AND METHODS

Experimental Site
Six tobacco (Nicotiana tabacum) genotypes including both
transgenic and wild type lines (Table 1) were planted during

TABLE 1 | List and description of tobacco genotypes used in the study.

Genotype Transgene Transgene expected
function

Petit Havana None, wild type n/a

Samsun None, wild type n/a

Mammoth None, wild type n/a

SFX Overexpressed
photosynthetic carbon
reduction cycle enzymes.
Background: Samsun

Improved photosynthetic
capacity, due to increased
carbon reduction enzymes

Single Rubisco
Knockdown (SSuS)

Rubisco small subunit
antisense. 40% of WT
Rubisco. Background: W38

Reduced photosynthetic
capacity, due to reduced
Rubisco activity

Double Rubisco
Knockdown (SSuD)

Rubisco small subunit
antisense. 10% of WT
Rubisco. Background: W38

Reduced photosynthetic
capacity, due to reduced
Rubisco activity

two growing seasons (2016–2017) at the University of Illinois
Energy Farm Facility in Urbana, Illinois1. Tobacco plants were
germinated in green house conditions and transplanted to the
farm field at the four leaf stage. Two weeks prior to transplanting,
275 lbs./acre ESN Smart Nitrogen (∼150 ppm) was applied
to the field site. A biological pesticide, Bacillus thuringiensis v.
kurstaki (54%) (DiPel PRO, Valent BioSciences LLC, Walnut
Creek, CA, United States), was applied to the field site 5 days
prior to transplanting and bi-weekly thereafter to control for
tobacco pests. In addition, a broad action herbicide, Glyphosate-
isopropylammonium (41%) (Killzall; VPG, Windthorst, TX,
United States) was applied once to all plots 2 days before
transplanting at 15 l at 70 g/l. Each genotype plot was arranged
in a 6 plant × 6 plant grid totaling 36 plants per plot with
0.38 m spacing and was replicated four times. Throughout the
growing season, irrigation was provided to tobacco plants as
needed. The six genotypes have quite contrasting differences
in photosynthetic capacities with three wild-type cultivars of
different growth rates, two transgenic Rubisco antisense lines
with reduced photosynthetic capacity (Hudson et al., 1992),
and one transgenic type with overexpression of photosynthetic
carbon reduction cycle enzymes to increased photosynthetic
capacity (Simkin et al., 2015; Table 1). Thus, these genotypes can
provide a wide range for each photosynthetic variable. In this
study, photosynthetic capacities Vc,max and Jmax (ambient values
rather than values normalized to a standard temperature) were
derived, as described below.

Leaf Reflectance and Gas Exchange
Leaf reflectance properties of the six genotypes were analyzed
from 400 to 2500 nm using a high-spectral-resolution
spectroradiometer (Fieldspec 4, Analytical Spectral Devices –
ASD, Boulder, CO, United States) with a leaf clip attached to the
fiber optic cable. The spectroradiometer has a spectral resolution
of 3 nm in the visible and near infrared range (350–1000 nm) and
of 8 nm in the shortwave-infrared range (1000–2500 nm). The
relative leaf reflectance was determined from the measurement
of leaf radiance divided by the radiance of a 99% reflective
white standard (Spectralon, Labsphere Inc., North Dutton, NH,
United States). Six leaf-clip reflectance measurements were
made in different regions of the same youngest fully expanded
sunlit leaf and then were averaged. Measurements were collected
between 11 AM and 2:30 PM local time under clear-sky
conditions for three different leaves in each plot. The short-time
window was to ensure that photosynthetic variation among
cultivars in a day were not impacted by time. Within 30 min
of hyperspectral measurements, the corresponding response of
photosynthesis (A) to intercellular CO2 concentration (Ci) for
each leaf was captured using a portable leaf gas exchange system
(LI-6400, LICOR Biosciences, Lincoln, NE, United States).
Measurements were initiated at the growth CO2 concentration of
400 µmol m−2 s−1 at saturating light (1800 µmol m−2 s−1). The
CO2 concentration (µmol mol−1) in the cuvette was changed
stepwise in the following order: 400, 200, 50, 100, 300, 400,
600, 900, 1200, 1500, 1800, and 2000. Prior to initiating A/Ci

1http://energyfarm.illinois.edu/index.html
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curves, three leaf temperature measurements were made and
averaged using a handheld IR temperature probe (FLIR TG54,
FLIR Systems, Inc., Wilsonville, OR, United States) and the block
temperature of the gas exchange cuvette was set to match this
average leaf temperature. In addition, leaves were acclimated
to chamber conditions for a minimum of 300 s and adjusted to
chamber conditions for between 160 s and 200 s before each
individual measurement. Relative humidity inside the chamber
was controlled at 65 ± 5% by adjusting the flow through the
desiccant tube integrated into the gas exchange system. The
photosynthetic variables Vc,max and Jmax were derived by fitting
A/Ci curves with a mechanistically defined mathematical model
(Farquhar et al., 1980) through a fitting utility program (Sharkey
et al., 2007). The mesophyll conductance (gm) was constrained
according to a previous study for tobacco at 25◦C (Evans and
Von Caemmerer, 2012). According to Sharkey (2016), the
derived Jmax should be called as J or J at 1800 µmol m−2 s−1 and
should not be used for the maximum rate of electron transport at
high light intensity. Thus, in the following of the manuscript, we
used J1800 instead of Jmax when referring to both measured and
predicted values.

The pairs of reflectance spectra and A/Ci curves were
measured on the following dates from 2016 to 2017: June 30-
July 1, 2016, July 19 and 21, 2016, August 4 and 5, 2016, June
22 and 28 2017, July 6, 7, 12 and 31 2017, and August 1 and
18 2017. In total, 212 data pairs were collected for Vcmax, and
179 measurement pairs for J1800. The fewer measurement pairs
of J1800 than Vcmax stems from the double Rubisco knockdown
plants (SSuD) not being electron transport limited under any
conditions and therefore were removed from analysis. Further
details can also be found in Meacham-Hensold et al. (2019).

REGRESSION TECHNIQUES

This study presents a test of the idea that an ensemble of
regression techniques can be used together to measure plant
traits with greater accuracy and sensitivity than from any
single regression algorithm. Stacked regression (SR, also called
as stacked generalization, stacking, stacking regressions, or
blending) was first introduced by Wolpert (1992) and later
statistically principled by Breiman (1996) to blend different
predictors to give improved prediction accuracy. Although SR
is used less frequently than other ensemble learning methods,
such as Bagging and Boosting, it is commonly used for
generating ensembles of heterogeneous predictors (Sesmero et al.,
2015). Figure 1 shows the workflows of stacked regression for
phenotyping photosynthetic capacities. The training data pairs,
leaf level hyperspectral reflectance and gas exchange system-
derived Vc,max and J1800 were first split into N folds (N was 10
in this study) with the Nth fold reserved for test. In this study,
six regression models including ANN, SVM, LASSO, RF, GP, and
partial least squares (PLS) regressions were individually tested
and combined in the stacked regression framework. As seen from
Figure 1, predictions for each fold were obtained using the N-
2 folds and collected in an out-of-sample predictions matrix.
Then the out-of-sample predictions matrix was used to train

the level-2 regression model to obtain final predictions for all
data points. Here the LASSO regression was used as the level-2
model to avoid collinearity among predictions of photosynthetic
capacities. To reduce uncertainty, the 10-fold cross-validations
were conducted for both level-1 and level-2 models. More
importantly, by using the cross-validated predictions, SR avoids
giving unfair weight to models with higher complexity. In this
study, the data pairs collected in 2016 and 2017 were randomly
split into the training and test datasets with a ratio of 9:1.
This splitting procedure was repeated 10 times for analysis of
the performance of both the six regression techniques and the
stacked regression.

Before the training of each individual regression model,
the original hyperspectral reflectance data of samples were
standardized for each individual band as:

z =
Ri − Ri
SRi

Eq. 1

where z refers to the standardized reflectance value, Ri is the raw
hyperspectral reflectance for band i, Ri is the mean value of all
the sampled hyperspectral reflectance for band i, and SRi is the
standard deviation of all the sampled hyperspectral reflectance
for band i. This pre-processing step ensures that reflectance
values at each wavelength have zero mean and unit standard
deviation and receive equal considerations in the model training
phase. For the level-2 model, the out-of-sample predictions
(without data normalization) were directly used for regression
stacking. Figure 2 shows the raw spectra and standardized data in
3D. During the model training and test phases, the performance
of each individual model and stacked regression was assessed
based on the coefficient of determination (R2) and root mean
square error (RMSE). In the following sections, a brief overview
of each individual regression technique was provided.

Artificial Neural Network
Artificial neural network models are generic non-linear function
approximation algorithms that are capable of computing,
predicting, and classifying data (Ali et al., 2016). They have
been widely used in applications including pattern recognition,
classification, and regression in various fields (Hong et al., 2004;
Kim, 2010; Zain et al., 2012; Neto et al., 2017). ANN refers to
a multi-layer network structure that consists of an input layer,
an output layer, and one or more hidden layers (Kimes et al.,
1998). It achieves regression by building a model of the data-
generating process for the network to generalize and predict
outputs from inputs that are not previously seen. In this study,
back-prorogation (BP) neural networks-based regression were
utilized in that it can handle non-linear relationships among data
even when there are conflicting relationships between the input
variables and the response variables (Moghadassi et al., 2010).
The optimal number of hidden layers and neurons in the BP
neural networks was determined through the leave-one-out cross
validation process that yielded the smallest RMSE value.

Support Vector Machine
Support vector machine, benefiting from the statistical
learning theory and the minimum structural risk principle

Frontiers in Plant Science | www.frontiersin.org 4 June 2019 | Volume 10 | Article 730

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00730 May 30, 2019 Time: 19:4 # 5

Fu et al. Ensemble Approach to Phenotyping Photosynthesis

FIGURE 1 | The workflows of regression stacking for phenotyping photosynthetic capacities. ANN, artificial neural network; SVM, support vector machine; LASSO,
least absolute shrinkage and selection operator; RF, random forest; GP, Gaussian process; and PLS, partial least squares. P and p are model predictions at different
modeling stage. The regression models are trained with a leave-one-out cross validation approach (the Nth fold is reserved) to form the out-of-sample predictions
matrix. The final predictions of each fold were made using the LASSO model based on the out-of-sample predictions matrix (no data normalization).

FIGURE 2 | The spectra data: a matrix of 212 samples (rows) and 2151 features (columns). The x-axis refers to the wavelength, the y-axis represents Vc,max , and
the z-axis denotes the reflectance of the spectrum (A) or z-scored value (B). Each color line represents one sample.

(Cortes and Vapnik, 1995), is mainly used for classification and
regression of small non-linear and high-dimensional samples
(Mountrakis et al., 2011). Given a set of adequate training

samples, support vector regression (SVR) allows continuous
estimations of a specified output variable by fitting an optimal
approximating hyperplane to a set of training samples. Such
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a hyperplane is approximated with two important parameters
including the kernel function, which reflects similarity between
data points (i.e., between reflectance values), and the cost
loss function (regularization parameter; Verrelst et al., 2012).
Integrated into a kernel framework, SVR enables mapping the
original data into a higher dimensional feature space, wherein a
better fitting of a linear function would be possible (Brereton and
Lloyd, 2010). In this study, the radial basis function (RBF) was
used as the kernel function with the regularization parameter
tuned through the cross-validation process.

Least Absolute Shrinkage and Selection
Operator
Least absolute shrinkage and selection operator as a regression
analysis method performs both variable selection and
regularization by minimizing the residual sum of squares
subject to the sum of the absolute value of the coefficients
being less than a constant (Tibshirani, 1996). It was originally
introduced in the context of least squares as a sparse regression
method. In building a model with high dimensional data such as
hyperspectral reflectance, LASSO regression can shrink some of
the regression coefficients toward zero as the penalty parameter
increases to improve the prediction accuracy (Donoho, 2006).
As a quadratic programming problem, LASSO regression
coefficients can be optimized and derived by efficient algorithms
without much computational cost (Efron et al., 2004; Friedman
et al., 2010; Boyd et al., 2011). In this study, the LASSO
regression was utilized since it has been widely used to deal with
hyperspectral data for various purposes (Samarov et al., 2015;
Sara et al., 2017; Yang and Bao, 2017).

Random Forest
Random forest is a non-linear statistical ensemble method
that constructs and subsequently averages a large number
of randomized decision trees for classification or regression
(Breiman, 2001). It models the relationship between explanatory
variables and response variables by a set of decision rules
which are constructed by recursively partitioning the input
space into successively smaller regions (Hastie et al., 2009). RFs
overcome weaknesses of regression trees that tend to overfit the
data as the tree becomes too complex (James et al., 2013) by
introducing randomness through a bootstrap strategy. Generally,
the number of variables selected at each split tree was optimized
by minimizing the out-of-bag error of predictions. In this study,
RF regression was selected because it can handle data of high
dimensions and does not require explicitly the feature selection
step (Hastie et al., 2009).

Gaussian Process
The Gaussian process regression (GPR) can be interpreted as a
distribution over and inference occurring in the space of function
from the function-space view (Williams and Rasmussen, 2006).
It has been received much attention in the field of machine
learning and can provide the Bayesian approach to establishing
the relationship between the input (i.e., hyperspectral reflectance)
and the output variable. GPR achieves the prediction purpose by

computing the posterior distribution over the unknown values
with the hyperparameters typically tuned by maximizing the
Type-II Maximum Likelihood, using the marginal likelihood of
the observations. In this study, GPR was employed since it has
been widely used for remote sensing applications (Verrelst et al.,
2013; Fu and Weng, 2016).

Partial Least-Squares Regression
Partial least square regression (PLSR) is a bilinear calibration
method using data reduction by compressing a large number
of measured collinear variables into a few orthogonal principal
components (also known as latent variables) (Geladi and
Kowalski, 1986; Wold et al., 2001). These latent variables
represent the main variance-covariance structures as they
are constructed to optimize the explained power of the
response variables (Ehsani et al., 1999). PLSR estimates
the regression coefficients for each latent variable through
a leave-one-out cross validation approach. In general,
the optimal number of latent variables is determined
by minimizing RMSE between predicted and observed
response variable. More details on the PLSR algorithm can
be referred to Esbensen et al. (2002).

RESULTS

The Modeling Performance for
Predicting Vc,max and J1800
The Vc,max and J1800 datasets collected based on the leaf gas
exchange systems in 2016 and 2017 exhibited a variation of 23.8
fold (14.5−344.6 µmol m−2 s−1) and 4.9 fold (73.6−362.0 µmol
m−2 s−1), respectively (Table 2). The six cultivars had quite
varying mean and standard deviation values for Vc,max and
J1800. Figure 3 shows the statistical distributions of R2 and
RMSE values of each machine learning algorithms for predicting
Vc,max. With the cross-validation in the model training phase,
the LASSO model yielded the highest mean R2 of 0.65 (mean
RMSE = 47.1 µmol m−2 s−1), followed by the PLS model with
the mean R2 of 0.64 (mean RMSE = 47.6 µmol m−2 s−1). The
SVM regression and the GP regression had the same mean
R2 value of 0.60 with the RMSE value of 50.4 µmol m−2 s−1

and 49.8 µmol m−2 s−1, respectively. Compared to the ANN
regression model (mean R2 = 0.61; mean RMSE = 50.5 µmol
m−2 s−1), the RF model had a higher mean R2 of 0.63 with
a larger mean RMSE of 54.0 µmol m−2 s−1. Among the
six regression models, LASSO displayed the smallest standard
deviation in both R2 and RMSE while the largest standard
deviation was found in ANN for both R2 and RMSE. In
the model test phase, it was found that the R2 and RMSE
values of each regression model had a relatively wider range,
compared to those in the model training phase. For example,
the R2 and RMSE yielded by the LASSO model in the model
test phase ranged from 0.48 to 0.75, much wider than the
range from 0.62 to 0.7 in the model training phase. In
addition, the mean R2 and RMSE values of each machine
learning algorithm were slightly larger or at least very similar
to those in the model training phase. These findings were
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TABLE 2 | The descriptive statistics of Vc,max (µmol m−2 s−1) and J1800 (µmol m−2 s−1) for samples collected in 2016 and 2017 from the energy farm at University of
Illinois at Urbana-Champaign.

Genotype Sample number Vc,max Range Vc,max ± Std Dev Jmax Range Jmax ± Std Dev

Petit Havana 38 80.3 − 238.1 166.0 ± 38.2 156.8 − 290.4 230.5 ± 27.9

Samsun 39 139.9 − 344.6 239.5 ± 61.8 169.4 − 362.0 267.8 ± 51.4

Mammoth 39 89.0 − 339.9 208.1 ± 65.1 92.8 − 342.4 233.4 ± 62.7

SFX 18 218.1 − 271.1 244.7 ± 15.6 252.5 − 323.2 285.0 ± 16.0

SSuS 45 29.9 − 241.5 160.6 ± 55.3 73.6 − 330.7 227.9 ± 64.6

SSuD 33 14.5 − 166.2 55.3 ± 37.9 N/A N/A

Overall 212 (179) 14.5 − 344.6 175.5 ± 79.2 73.6 − 362.0 243.9 ± 55.5

The range and mean values ( ± standard deviation) of Vc,max and J1800 are provided for each tobacco cultivar as well as for the whole dataset based on leaf gas exchange
measurements. In total, 212 data samples were collected for Vc,max, and 179 samples for J1800.

FIGURE 3 | The statistical distributions of R2 (A) and RMSE (B) of each machine learning algorithm for predicting Vc,max in the training (with and without
cross-validation) and test phases. The training phase with cross-validation was required by the regression stacking, and models trained without cross-validation were
used in the test phase.

reasonable since the machine learning algorithms applied to
test dataset were calibrated by all the training data rather
than data used in the cross-validation in the training phase
(Figure 3). The best regression model (based on the mean
R2 and RMSE values) in the model test phase was achieved
by SVM (R2 = 0.67, RMSE = 47.1 µmol m−2 s−1), followed
by GP (R2 = 0.66, RMSE = 47.7 µmol m−2 s−1), LASSO
(R2 = 0.66, RMSE = 47.9 µmol m−2 s−1), RF (R2 = 0.61,
RMSE = 49.5 µmol m−2 s−1), PLS (R2 = 0.60, RMSE = 50.1 µmol
m−2 s−1), and ANN (R2 = 0.60, RMSE = 54.8 µmol m−2

s−1). The disparities of the performance of different regression
models, when applied to the same dataset, further suggested
that it was necessary to develop new techniques to utilize
the advantages but avoid the disadvantages of each individual
regression algorithm.

Similar results were also found in Figure 4 for predicting
J1800 using the six regression models. However, compared to the
mean R2 values of the regression models in Figure 3, those in
Figure 4 were much smaller and were generally less than 0.6
in the model training phase. The best predictive performance
was achieved by the PLSR with the mean R2 value of 0.56 and
a RMSE value of 43.8 µmol m−2 s−1. Compared to PLSR, the

LASSO model had a smaller mean R2 value of 0.48 with a smaller
mean RMSE value of 40.1 µmol m−2 s−1. It was also noted
that the ANN model (R2 = 0.48, RMSE = 41.5 µmol m−2 s−1)
exhibited a similar predictive performance to the LASSO model
but with a relatively narrower R2 range. The SVM, RF, and GP
had a very similar predictive performance, with the GP model
exhibiting the largest standard deviation values in both R2 and
RMSE. Higher mean R2 values and smaller RMSE values were
observed in the model test phases compared to those in the
training phase. The improved performance is likely attributed
to the better trained machine learning algorithms using all the
samples as the training data (Figure 4). Overall, the differences
among the performance of each individual regression model
in predicting Vc,max and J1800 across different cultivars over
time provided a strong basis for stacking (see section “The
Regression Stacking”).

The Regression Stacking
Figure 5A presents the modeling performance of the regression
stacking (the LASSO model as the level-2 model as shown in
Figure 1) for predicting Vc,max and J1800 in both the training
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FIGURE 4 | The statistical distributions of R2 (A) and RMSE (B) of each machine learning algorithm for predicting J1800 in the training (with and without
cross-validation) and test phases. The training phase with cross-validation was required by the regression stacking, and models trained without cross-validation were
used in the test phase.

FIGURE 5 | The statistical distributions of R2 and RMSE of the regression stacking for predicting Vc,max and J1800 in the training (cross-validation) and test phases
(A), and the distribution of coefficient within the level-2 model (LASSO) (B).

and test phases. For Vc,max, the regression stacking improved
the mean R2 value to 0.75, an increase of 0.1 compared to the
highest mean R2 value observed in the LASSO model (Figure 3)
in the training phase (cross-validation). Meanwhile, the mean
RMSE value in the regression stacking was reduced to 43.0
µmol m−2 s−1, less than the mean RMSE value of 47.1 µmol
m−2 s−1 yielded by the LASSO model. Still, a slightly higher
mean R2 value of 0.76 and a smaller mean RMSE value of
42.2 µmol m−2 s−1 were observed in the test phases compared to
those in the training phase. Similar findings were also observed
in the performance of the stacking regression to predict the
J1800 parameter (Figure 5A) in the training and test phases.
For J1800, the stacking regression yielded the mean R2 value
of 0.64 and the mean RMSE value of 37.2 µmol m−2 s−1 in

the training phase. An increase of 0.08 in the R2 value and a
decrease of 6.6 µmol m−2 s−1 in the RMSE value were noted
in the training phase of the stacking regression compared to
the best model (the PLS model with the R2 of 0.56 and the
RMSE value of 43.8 µmol m−2 s−1) used to predict the J1800
parameter (Figure 4). In the test phase, the stacked regression
provided a higher R2 value of 0.63 and a RMSE value of
36.4 µmol m−2 s−1. It was also worth noting that the mean
R2 and RMSE values yielded by the regression stacking in the
training phase were very similar to those in the test phase
for predicting both Vc,max and J1800. Overall, the performance
improvement of the regression stacking should be credited to
the ability of the regression stacking to harness strengths of each
individual model.
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To further explain the mechanism of the better performance
of the regression stacking, Figure 5B shows the distribution
of the coefficient of each individual regression model within
the level-2 model (the LASSO model). A larger coefficient
within the level-2 model indicated a higher weight in the
stacking procedure. As shown in Figure 5B, the stacking
performance depended heavily on the LASSO, ANN, and
PLS models with the mean coefficients (standard deviation)
of 0.39 (0.07), 0.30 (0.09), and 0.26 (0.07), respectively,
for predicting the Vc,max parameter. The impacts of the
SVM, RF and GP models on the stacking were relatively
small even though the standard deviation values of their
coefficients could reach up to 0.22. The larger standard
deviation values of the SVM, RF, and GP model, compared
to the other three models, may indicate that the three
models were more sensitive to the changes in the training
dataset. These results suggest that the sampling strategy
should be optimized to generate a representative training
dataset to feed into the SVM and RF models for a good
modeling performance.

For the prediction of J1800, the distribution of the coefficient
of each regression model was quite different from that in
the prediction of J1800. The highest coefficient was found
in the ANN model (0.34 ± 0.15), followed by the LASSO
(0.29 ± 0.11), PLS (0.24 ± 0.04), SVM (0.23 ± 0.25),
GP (0.20 ± 0.23), and RF (−0.32 ± 0.23) models. Still,
the coefficient of the SVM, RF, and GP within the level-
2 model, compared to that in other three models, displayed
relatively higher standard deviation though the RF model was
negatively used in the stacking for predicting J1800. Overall,
these findings indicated that the stacking procedure was

better than each individual regression techniques for predicting
photosynthetic capacities.

DISCUSSION

Explanations for Heterogeneous
Modeling Performance of Machine
Learning Algorithms to Predict Vc,max
and J1800
As the use of hyperspectral reflectance measurements in high-
throughput phenotyping of plant traits continues to increase
(Furbank and Tester, 2011), powerful statistical techniques are
needed to provide the best predictive power. A common dilemma
arises when there are multiple empirical and machine learning
algorithms for selection – which one is the best model for high-
throughput phenotyping of plant traits (Heckmann et al., 2017)?
As the predictive ability of each algorithm may be different,
it is worth investigating whether there is a way to collectively
harness the strengths of each predictive model. Inspired by
the recent advances of geographic stacking in remote sensing
applications (Clinton et al., 2015; Healey et al., 2018), this study
aimed to test the idea, supported by the results in the sections
“The Modeling Performance for Predicting Vc,max and J1800”
and “The Regression Stacking,” that the stacking of different
regression models (ANN, SVM, LASSO, RF, GP, and PLS)
would provide a better predictive performance than that of each
individual algorithm.

To further understand the modeling performance of each
regression technique, the whole spectrum was divided into

FIGURE 6 | The relative contribution (%) of each band block for the modeling performance of each regression model for estimating Vc,max (A) and J1800 (B). The
relative contribution was calculated as the percent change of the R2 value. ANN, artificial neural network; SVM, support vector machine; LASSO, least absolute
shrinkage and selection operator; RF, random forest; GP, Gaussian Process; PLS, partial least squares. A: 350–400 nm, B: 400–500 nm, C: 500–600 nm, D:
600–700 nm, E: 700–800 nm, F: 800–900 nm, G: 900–1000 nm, H: 1000–1100 nm, I: 1100–1200 nm, J: 1200–1300 nm, K: 1300–1400 nm, L: 1400–1500 nm,
M: 1500–1600 nm, N: 1600–1700 nm, O: 1700–1800 nm, P: 1800–1900 nm, Q: 1900–2000 nm, R: 2000–2100 nm, S: 2100–2200, T: 2200–2300 nm, U:
2300–2400 nm, and V: 2400–2500 nm.
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22 blocks (A–V in Figure 6). Figure 6 shows the relative
contribution (%) of each band block for the modeling
performance of each regression technique, including the ANN,
SVM, LASSO, RF, GP, and PLS models. For each band block,
the modeling procedure was repeated 100 times and the average
percent change in the R2 value was recorded. Here the relative
contribution (importance) of each band block to the modeling
performance was calculated as the percent change in the R2 value
when the band block was excluded from the modeling procedure.
The baseline R2 value was provided by the model calibrated by
the dataset using the whole spectrum from 350 to 2500 nm.

As shown in Figure 6, it was observed that the band blocks T,
U, and V (2200–2500 nm) did not affect the predictions of Vc,max
and J1800, as evidenced by the zero percent change of the R2 values
yielded by all the six regression models. This finding suggested
that the spectral bands from 2200 to 2500 could be discarded
without compromising the overall modeling performance. In
addition, the six regression models had quite different responses
to the changes in the spectra from 350 to 2200 nm. For the
predictions of Vc,max, for example, the exclusion of the band
block F (800–900 nm) resulted in the decrease of the R2 value by
4.9, 0.7, and 0.5% in the ANN, RF, and PLS models, respectively,
and the increase of the R2 value by 0.4 and 0.1% in the SVM
and GP models, respectively. For the predictions of J1800, the
exclusion of the band block A (350 – 400 nm) led to a rising R2

by 14.9 and 5.9 % in the ANN model and the LASSO model, and
a falling R2 by 2.6, 8.4, 2.6, and 3.4% by the other four regression
models. Note the percent change value was relatively small for
all the six regression models (mostly within the range between
−5 and +5), and it should be mainly interpreted as a measure
of the relative importance of each band block or the unique
contribution of each band block to the modeling performance.
For instance, in the SVM model, the percent change value was
generally less than 1%, indicating that the unique contribution
of each band block was very small, but the shared contribution
of the combination of band blocks was huge (99%). The PLS and
GP model exhibited a very similar ability as the SVM model to use
the shared contribution of the combination of band blocks for the
modeling performance. In addition, it should be cautioned that
previous studies used the coefficient or the variable importance
in projection (VIP) provided by the PLS model to understand
the importance of each spectral band to, and the underlying
physiological mechanism of the modeling performance (Serbin
et al., 2012, 2015; Yendrek et al., 2017). However, when it comes
to the comparison of the modeling performance of different
regression techniques, these metrics could not be used anymore.
Thus, this study used the percent change of the R2 value
as a common metric to understand the modeling differences
among the six regression techniques rather than to understand
the physiological aspects of correlating reflectance spectra with
photosynthetic information. Further explanations of underlying
physiology to correlate reflectance spectra with photosynthetic
variables can be found in Meacham-Hensold et al. (2019).
Overall, the results in Figure 6 suggested that the six regression
models utilized information from different spectral regions to
achieve the best modeling performance. The differences in
utilizing spectral information by the six regression models thus

provided a solid basis for stacking which was expected to enhance
the strengths of each individual regression technique.

Implications for High-Throughput
Phenotyping
The application of imaging spectroscopy or hyperspectral
reflectance to plant phenotyping resulted from initial goals
to estimate canopy structure and biochemistry to improve
understanding of ecosystem carbon dynamics (e.g., Knyazikhin
et al., 2013; Ustin, 2013). Hyperspectral remote/proximal sensing
has also been successfully used for rapid measurements of
physiological traits in large number of crop genotypes that
are needed to fully understand plant-environment interactions
(Großkinsky et al., 2015). Previous studies have shown that
hyperspectral reflectance measurements and the PLS model can
be used together to estimateVc,max and Jmax in a high-throughput
manner under well-controlled environment (Serbin et al., 2012;
Ainsworth et al., 2014; Silva-Perez et al., 2018). However, the PLS
analysis is species and environment dependent and cannot be
easily adapted to other crop species with varying field conditions.
Inspired by the recent advancements in the geographic stacking
in the remote sensing community (Clinton et al., 2015; Healey
et al., 2018), this study revealed that the regression stacking
was superior over individual regression techniques (ANN, SVM,
LASSO, RF, GP, and PLS) in capturing intraspecies variations of
photosynthesis capacities among tobacco lines with genetically
altered photosynthetic pathways.

The stacking results presented in this study are valuable
particularly for high-throughput phenotyping of plant
physiology traits of new crop cultivars in a large quantity.
Within a field, the microenvironments due to a combination
of factors such as temperature, nutrition concentration, and
leaf angle distribution may vary from plot to plot and thus
influence the plant phenotypes and their interactions with
the environment. As a result, spatial and temporal variability
of plant traits may be expected due to the variations of
microenvironments. The results as shown in Figures 3, 4
indicated that different regression techniques could capture quite
different temporal variations of plant photosynthetic capacity.
However, variance in RMSE/R2 in the test phase was larger
than that in the training phase as shown in Figures 3, 4. This
higher variance may suggest that a larger number of data samples
are needed to derive a robust statistical relationship between
reflectance spectra and photosynthetic variables. Although these
machine learning algorithms can still work well with a small
number of data pairs, their strength can only be fully released
with independent and dependent variables covering a wide
range of values. As the collection of ground-truth information
is time-consuming, the sharing of photosynthetic variables
from different species under different growth environments
within the scientific community may be a viable solution to
further train and assess each regression technique. The further
application of the regression stacking to hyperspectral reflectance
measurements from close-range/remote sensing platforms
(e.g., unmanned aerial vehicle and gantries) can help estimate
photosynthetic capacities of hundreds or even thousands
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of genotypes needed in a plant breeding context. However,
before the use of the developed regression technique at
canopy level with close-range/remote sensing platforms, there
still exist challenges in detecting continuous variations in
photosynthetic capacity among crop cultivars. Leaf-scale analysis
provides an ideal test bed for spectroscopic techniques as
spectral measurements at a broader scale need to deal with
more challenges such as differences in canopy cover and
structure among different crop cultivars. Therefore, future
work should be made to integrate the developed regression
stacking technique with remote sensing radiative transfer models
that can accurately estimate reflectance spectra from plants
by accounting for canopy structures and background soil
signals. Overall, the use of regression stacking yielded a better
predictive performance to identify photosynthetic differences
among cultivars with a RMSE reduction by 8% for Vc,max and by
15% for J1800.

There is potential for the stacking procedure to be further
improved. First, more machine learning algorithms can
be incorporated in the stacking procedure. These newly
incorporated regression models can be variants of the algorithms
already used in the study or totally new machine learning
algorithms. For example, deep learning-based regression
techniques such as the denoising autoencoder network
regression (Bengio et al., 2006) can be used as a totally new
algorithm in the stacking procedure while the least square
SVM regression (Suykens et al., 2002) can be used as a
variant of the SVM regression already used in this study.
The inclusion of these different types of regression models
may lead to different modeling performance of the stacking.
Second, as the stacking procedure occurs at the product
level (photosynthesis parameters are separately predicted
by each regression technique before stacking), it can be
extended to include non-machine learning based approaches.
For example, photosynthesis parameters can be estimated
by using the ground-based solar-induced florescence (SIF)
platform (Grossmann et al., 2018; Yang et al., 2018). The
SIF based photosynthetic predictions can then be stacked
with those estimated from hyperspectral reflectance to
capture interspecies variations among different environmental
conditions. Thus, further research efforts can refine this study.
It is also worth investigating the portability of the stacking
to high-throughput phenotyping of other plant traits such
as leaf chlorophyll and nitrogen concentration under varying
growth conditions.

CONCLUSION

Current efforts to engineer photosynthetic pathways in
crops are constrained by phenotyping challenges. Although
hyperspectral sensors are increasingly used to rapidly estimate
photosynthetic capacity, effective analysis techniques are still
lacking to capture interspecies variations in a large field with
varying environment conditions. Many machine learning and
empirical models can be selected to correlate hyperspectral

reflectance with photosynthesis capacity, therefore it is worth
investigating which models work better and whether the
combination of individual regression techniques can provide
better predictive performance. Inspired by the application
of geographic stacking in the remote sensing studies, this
study examined a series of machine learning algorithms,
including ANN, SVM, LASSO, RF, GP, and PLS in the high-
throughput phenotyping context. Results showed that the
stacked regression had a better predication performance, with
an increase of R2 around 0.1, than individual regression
algorithms in phenotyping of photosynthetic capacities. Analysis
of variable importance also revealed diverse abilities of the
six regression techniques to utilize spectral information for
the best modeling performance. The techniques presented in
this study could be particularly valuable for high-throughput
phenotyping of many crop cultivars, thus accelerating plant
breeding processes. It is also suggested in this study that the
stacking procedure can be further extended to harness strengths
of new techniques such as the ground-based SIF system as a
supplement to the hyperspectral reflectance for estimating other
phenotypic traits.
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