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Abstract

Global temperatures are rising, and higher rates of temperature increase are projected

over land areas that encompass the globe's major agricultural regions. In addition to

increased growing season temperatures, heat waves are predicted to become more

common and severe. High temperatures can inhibit photosynthetic carbon gain of

crop plants and thus threaten productivity, the effects of which may interact with

other aspects of climate change. Here, we review the current literature assessing

temperature effects on photosynthesis in key crops with special attention to field

studies using crop canopy heating technology and in combination with other climate

variables. We also discuss the biochemical reactions related to carbon fixation that

may limit crop photosynthesis under warming temperatures and the current strate-

gies for adaptation. Important progress has been made on several adaptation strate-

gies demonstrating proof‐of‐concept for translating improved photosynthesis into

higher yields. These are now poised to test in important food crops.
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1 | INTRODUCTION

Agricultural production faces numerous global change‐related abiotic

stresses, including rising temperatures, which pose a threat to global

food production and sustainability (Ainsworth & Ort, 2010). Global

mean temperatures have risen by approximately 1°C since the Indus-

trial Revolution. If the atmospheric CO2 concentration increase con-

tinues at its current pace (i.e., IPCC RCP8.5 scenario), an additional

1.5°C increase over the 2001 average global temperature will occur

by mid‐century and 3°C to 5°C by 2100. However, these temperature

increases will be spatially heterogeneous, as some areas of the world

are predicted to warm more rapidly than others (Ciais et al., 2013;

IPCC, 2018; Teixeira, Fischer, Van Velthuizen, Walter, & Ewert,

2013). Temperatures over land are increasing at a faster rate than over

water (IPCC, 2018) and will continue to do so, especially at higher lat-

itudes in the Northern Hemisphere (Hoegh‐Guldberg et al., 2018),

which could experience temperature increases of up to 10°C, whereas

3°C–4°C increases are possible in the tropics (Ciais et al., 2013). Areas

of greater warming in the Northern Hemisphere will most likely occur

between 40 and 60°N and overlap with major agricultural regions (Bita
wileyonlinelibrary.
& Gerats, 2013; Teixeira et al., 2013). Additionally, heat stress will

likely be most detrimental to lower income countries (Deryng, Con-

way, Ramankutty, Price, & Warren, 2014). Heat waves will present

temporal variation in growth temperatures for crops and are predicted

to increase in frequency, intensity, and duration over most land areas

(Coumou & Robinson, 2013; IPCC, 2013a; Meehl & Tebaldi, 2004;

Seneviratne et al., 2012; Wang, Huang, Luo, Yao, & Zhao, 2015).

Warming temperatures have already contributed to global yield

losses in wheat (Triticum aestivum) and maize (Zea mays; Asseng

et al., 2015; Lobell & Gourdji, 2012; Lobell, Schlenker, & Costa‐

Roberts, 2011), and future temperature increases are predicted to

negatively affect global yields of key crops, including wheat, maize,

rice (Oryza sativa), and soybean (Glycine max; Zhao et al., 2017). Con-

sidering that many of the areas predicted to be most impacted by

warming are major growing regions for food crops, adaptation strate-

gies must be sought to sustain productivity, especially with consider-

ation of other changing climate factors. A range of plant processes

are affected by heat stress that vary across species, but impacts on

photosynthesis are common to virtually all crops (Bita & Gerats,

2013; Hasanuzzaman, Nahar, Alam, Roychowdhury, & Fujita, 2013;
Plant Cell Environ. 2019;42:2750–2758.com/journal/pce
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Nadeem et al., 2018). Within photosynthesis, a wide array of compo-

nent processes are high temperature sensitive. Membrane fluidity

increases, and photosynthetic membranes, machinery, and pigments

are affected by increased reactive oxygen species generation at

above‐optimal temperatures. Inactivation of the oxygen evolving com-

plex of photosystem II can also occur in thylakoid membranes at tem-

peratures >42°C (Yamane, Kashino, Koike, & Satoh, 1998). However,

research in field crops suggests heat sensitivity of biochemical pro-

cesses of carbon assimilation is the major cause of photosynthetic

inhibition of both C3 and C4 photosynthesis, particularly in relation

to carboxylation efficiency (Crafts‐Brandner, van de Loo, & Salvucci,

1997; Perdomo, Capó‐Bauçà, Carmo‐Silva, & Galmés, 2017; Perdomo,

Carmo‐Silva, Hermida‐Carrera, Flexas, & Galmés, 2016; Rashid et al.,

2018; Salvucci & Crafts‐Brandner, 2004). Carboxylation efficiency is

largely determined by ribulose‐1,5‐bisphosphate carboxylate oxygen-

ase (Rubisco) efficiency and activation as well as ribulose‐1,5‐

bisphosphate (RuBP) regeneration. Thus, this review focuses on the

effects of rising temperature on these processes in crops, relevant tar-

gets for improvement, and recent advances that hold promise to sub-

stantially improve crop productivity in higher temperatures.
2 | EFFECTS OF ELEVATED TEMPERATURES
AND INTERACTING CLIMATE VARIABLES ON
PHOTOSYNTHESIS

Crop photosynthesis varies in response to elevated seasonal growing

temperatures. For example, field‐grown spring wheat exposed to

infrared heating showed no negative effects of elevated temperatures

on photosynthesis compared with the control, likely because growth

conditions were relatively cool (Table 1; Wall, Kimball, White, &

Ottman, 2011). However, in field‐grown maize and soybean, 3.5°C

increases above ambient seasonal growth temperatures imposed by

infrared heaters decreased photosynthesis (Table 1; Ruiz‐Vera et al.,

2013; Ruiz‐Vera, Siebers, Drag, Ort, & Bernacchi, 2015).

Photosynthetic acclimation through increased electron transport

capacity, differential expression of Rubisco activase isoforms, heat

shock protein expression, and reductions in respiration (Yamori,

Hikosaka, & Way, 2014) can occur with long‐term warming but may

still result in lower photosynthetic rates as compared with those at

ambient temperature (Way & Yamori, 2014). Acclimation is less likely

during heat waves or acute heat stress, which are defined by sudden

increases in temperature (Smith and Dukes 2017). These periods of

heat stress may therefore have greater effects on daily integrals of

photosynthesis, albeit for shorter time spans during crop growth.

Indeed, simulated three‐day heat waves in field‐grown soybean and

maize significantly reduced leaf photosynthesis during the duration

of the experiment, but recovery of photosynthesis to control levels

occurred within 24 hr of the end of the heating period (Table 1;

Siebers et al., 2015, 2017). Although simulated heat waves generally

led to reductions in yield, the impacts were greater when heating

occurred during reproductive stages, suggesting yield reductions were
also affected by direct heat stress on reproductive processes (Siebers

et al., 2015, 2017).

The effects of elevated temperature and heat waves on photosyn-

thesis are more complex when occurring in combination with other

facets of climate change. The specificity of Rubisco for CO2 versus

O2 (SC/O) declines as temperatures increase, which favors the oxygen-

ation of RuBP and photorespiration over the carboxylation of RuBP

and photosynthesis. The ratio of the carboxylation rate (vc) compared

with the oxygenation rate (vo) of RuBP by Rubisco is determined as

vc=vo ¼ SC=O CO2½ �= O2½ �

using the concentrations of CO2 and O2 at the site of Rubisco. SC/O in

soybean declines from approximately 100 at 25°C to 90 at 30°C

(Orr et al., 2016). Thus, an 11% increase in [CO2]/[O2] would be

required at the site of Rubisco to maintain a similar rate of vc/vo with

the reduction of SC/O. Although atmospheric [CO2] is predicted to

increase by approximately 38% to 550 ppm by the year 2050 (IPCC,

2013b), the increase in [CO2] at Rubisco in C3 crops will likely be

affected by changes in stomatal and mesophyll conductances and a

larger reduction in the solubility of CO2 as compared with O2 with

warmer temperatures. Therefore, studies describing the effects of ele-

vated temperatures with interacting climate variables on crops, espe-

cially in field conditions, are necessary for understanding the

complex effects on measured photosynthesis. The results available

to date from such studies are described below with open‐air field

studies summarized in Table 1.

2.1 | Elevated CO2

Atmospheric CO2 concentrations are predicted to reach 550 ppm by

2050 (IPCC, 2013b). Elevated CO2 has the potential to stimulate pho-

tosynthesis and biomass in C3 plants. However, in combination with

elevated temperatures, the stimulation of photosynthesis by elevated

CO2 will be affected by warmer growth temperatures favoring oxy-

genation of RuBP over carboxylation. For example, modeled improve-

ments in soybean CO2 assimilation with increasing atmospheric CO2

and growing season temperature will still be hampered by photorespi-

ration by up to 23–48%, depending on the future climate scenario

(Walker, VanLoocke, Bernacchi, & Ort, 2016). In field‐grown soybean

exposed to both Free Air Carbon Enrichment to simulate elevated

CO2 and infrared canopy heating technology to simulate elevated

temperatures, the extent of stimulation by elevated CO2 varied with

the growing season. Photosynthetic rates were similarly enhanced by

elevated CO2 at ambient and elevated temperatures in a relatively

cool year (2009), but the stimulation by elevated CO2 in elevated tem-

peratures during a relatively hot year (2011) was substantially smaller

than the stimulation by elevated CO2 alone (Table 1; Ruiz‐Vera et al.,

2013). In chamber‐grown wheat, elevated CO2 and elevated tempera-

ture, when applied separately, negatively affected Rubisco activity.

However, elevated temperature reduced the inhibition of Rubisco car-

boxylation activity by elevated CO2 (Pérez, Alonso, Zita, Morcuende,

& Martínez‐Carrasco, 2011). Whereas short‐term heat stress reduced
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photosynthetic parameters in chamber‐grown tomato (Solanum

lycopersicum), elevated CO2 mitigated most of these effects (Pan,

Ahammed, Li, & Shi, 2018). At ambient CO2, heat waves in field‐grown

soybean reduced photosynthesis during both flowering and pod‐filling

stages. Elevated CO2 conditions often mitigated the effects of higher

temperatures compared with elevated temperatures alone, but the

interaction substantially decreased photosynthesis compared with

either ambient or elevated CO2 conditions when applied separately

(Table 1; Thomey et al., submitted).

In C4 photosynthesis, CO2 is concentrated around Rubisco in bun-

dle sheath chloroplasts; thus, stimulation of photosynthesis by ele-

vated CO2 is minimal. Indeed, field‐grown maize photosynthesis

declined with elevated temperature regardless of CO2 conditions

(Table 1), and the detrimental effects of elevated temperature on pho-

tosynthesis was associated with lower yields at both ambient CO2 and

elevated CO2 (Ruiz‐Vera et al., 2015). Similarly, other studies have also

compared thermotolerance with photosynthetic types in elevated CO2

conditions and found increased thermotolerance in C3 but not C4

plants (Wang et al., 2008), except for maize grown at low tempera-

tures (Hamilton, Heckathorn, Joshi, Wang, & Barua, 2008). However,

elevated CO2 does improve water use efficiency of C4 plants due to

the partial stomatal closure it induces (Leakey et al., 2009; Ort & Long,

2014), which can have an increasing important role as temperatures,

and thus vapor pressure deficits, rise.
2.2 | Drought

Drought conditions are predicted to become more frequent and

severe with rising temperatures (Hoegh‐Guldberg et al., 2018).

Drought decreases plant transpiration, which limits evaporative

cooling of leaves and may exacerbate high temperature stress on leaf

photosynthesis caused by decreasing SC/O. In addition, drought

reduces stomatal conductance, which reduces intercellular CO2 con-

centrations and therefore increases oxygenation of RuBP by Rubisco

(Feller, 2016), which would increasingly be favored over carboxylation

due to the decline in SC/O as temperatures rise. Thus, drought will

likely worsen the effects of increasing air temperature on crop photo-

synthesis. Indeed, the interaction of drought and elevated tempera-

tures led to wheat photosynthetic rates of approximately half that of

either factor alone (Perdomo et al., 2016).
3 | RECENT ADVANCES IN CARBON
FIXATION

As noted above, the biochemical reactions related to carbon fixation

are often most limiting to photosynthesis in major crops. Various lim-

itations to RuBP carboxylation by Rubisco have been identified, along

with strategies for potential improvements (Carmo‐Silva, Scales,

Madgwick, & Parry, 2015; Parry et al., 2013). Rubisco is catalytically

slow; thus, plants require large quantities of the enzyme, and Rubisco

activation is largely controlled by its accessory protein, Rubisco

activase, which is responsible for facilitating the displacement of
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inhibitors from the catalytic site of Rubisco. In addition, the oxygena-

tion reaction of Rubisco requires the costly photorespiratory pathway

to recycle inhibitory byproducts. Therefore, the major goal of enhanc-

ing photosynthetic performance in current and warmer temperatures

involves enhancing carboxylation of RuBP by Rubisco. Strategies for

doing so (Figure 1) and recent successes are discussed below.
3.1 | More efficient Rubiscos at high temperature

The trade‐off between specificity and catalytic activity of Rubisco

conceptually hampers efforts to engineer a more efficient enzyme.

Although transformation of nuclear genes has had limited success,

transformation of genes in the chloroplast has been more successful

(Sharwood, 2017). In addition, findings showing transformation of

chaperone proteins is also needed may aid in successful introduction

of new forms of Rubisco (Whitney, Birch, Kelso, Beck, & Kapralov,

2015). Recent studies, however, are investigating variation in Rubisco,

especially in response to higher temperatures. Galmés, Kapralov,

Copolovici, Hermida‐Carrera, and Niinemets (2015) found variation

in the thermal tolerance of Rubisco carboxylase turnover rates across

phylogenetic groups. Researchers also identified substantial diversity

in Rubisco kinetics among C3 and C4 members of the Paniceae family

that could improve crop Rubiscos (Sharwood, Ghannoum, Kapralov,

Gunn, & Whitney, 2016). Variation in wild relatives of domesticated

crops may provide insight into improving Rubisco (Atwell, Wang, &

Scafaro, 2014). For example, Prins et al. (2016) found variation in cat-

alytic properties and sequences of Rubisco across Triticeae genotypes

that could be useful for improving wheat photosynthesis at high tem-

perature through breeding bread wheat with other close relatives.

Alternatively, directed evolution in Escherichia coli shows potential

for identifying mutations that could improve Rubisco carboxylation

rate, efficiency, and specificity (Wilson, Martin‐Avila, Conlan, &

Whitney, 2018). However, next steps will require efforts to do so in

algal and plant chloroplasts. There is also evidence suggesting differ-

ential expression of small subunit (SSU) isoforms could lead to Rubisco

plasticity with changing environments. Warm‐grown Arabidopsis
(Arabidopsis thaliana) showed a higher ratio of SSU‐B to SSU‐1A iso-

forms, which was associated with higher specificity for CO2 versus

O2 and greater photosynthetic nitrogen use efficiency (Cavanagh,

2016).
3.2 | Increasing the thermostability of Rubisco
activase

Rubisco activity is largely controlled by its accessory protein, Rubisco

activase, which is responsible for facilitating the displacement of inhib-

itors from the catalytic site of Rubisco. In maize, an important C4 crop in

whichCO2 is actively concentrated near Rubisco, Rubisco activase tran-

script abundance and protein expression correlate with yield (Yin et al.,

2014). However, Rubisco activase is sensitive to moderate increases in

temperature and therefore limits the proportion of activated Rubisco,

and thus photosynthesis, as temperatures increase in both C3 and C4

plants (Crafts‐Brandner & Salvucci, 2000; Sage, Way, & Kubien, 2008;

Salvucci & Crafts‐Brandner, 2004). Its role, however, becomes even

more important as temperatures rise, and production of catalyticmisfire

products increases (Bracher, Whitney, Hartl, & Hayer‐Hartl, 2017;

Carmo‐Silva et al., 2015). In Arabidopsis, introduction of more

thermotolerant Rubisco activases increases photosynthesis (Kumar, Li,

& Portis, 2009; Kurek et al., 2007). Thus, efforts to produce more

thermotolerant Rubisco activases in crops is a promising adaptation

strategy. As with Rubisco, researchers are looking to wild relatives of

common domesticated crops, which can produce different Rubisco

activase isoforms with varying levels of thermostability, for more

thermotolerant variants with some success. Domesticated rice trans-

formed with a single Rubisco activase gene from a wild relative

exhibiting higher Rubisco activase thermostability showed improved

crop growth and development at high temperatures. In addition,

although transgenic plants did not have higher rates of steady‐state

photosynthesis, photosynthetic induction was significantly faster in

the plants containing wild Rubisco activase at higher growth tempera-

tures (Scafaro et al., 2018). An alternative approach to improving

Rubisco activase thermotolerance may be differential expression of
FIGURE 1 Summary of strategies for
enhancing carboxylation of ribulose‐1,5‐
bisphosphate by Rubisco and lowering the
costs of photorespiration in a C leaf3
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the two isoforms in a temperature‐dependent manner as their sensitiv-

ity to heat stress differs in some species (Crafts‐Brandner et al., 1997;

Law & Crafts‐Brandner, 2001; Law, Crafts‐Brandner, & Salvucci, 2001).
3.3 | Mitigating increased photorespiratory costs at
higher temperature

C3 plants recycle the inhibitory byproducts of oxygenation by Rubisco

through the photorespiratory pathway, but this process costs energy

and releases previously fixed carbon and NH4, which must be refixed

at considerable energetic cost. Elevated CO2 levels should lead to

increased CO2 at the site of Rubisco within plant chloroplasts, but

higher temperatures reduce the specificity for CO2 versus O2 and also

decrease the solubility of CO2 in solution more rapidly than O2,

resulting in relatively high ratios of O2/CO2 near Rubisco. Thus, pho-

torespiration and its associated costs will likely lead to substantial crop

yield losses in future climate conditions (Walker et al., 2016). How-

ever, recent studies have shown promising results for limiting the

costs of photorespiration using several approaches. The first focuses

on overexpression of a potentially limiting enzyme within the

photorespiratory pathway to accelerate the recycling process. Overex-

pressing the H‐protein of the glycine cleavage system in tobacco

(Nicotiana tabacum) leaves increased plant biomass when grown in

the field (López‐Calcagno et al., 2019). However, constitutive overex-

pression inhibited growth, supporting the need for targeted expres-

sion. The second approach inserts enzymes to essentially bypass the

multi‐organellar pathway. Synthetic glycolate metabolic pathways

using enzymes from other organisms in combination with RNAi to limit

glycolate flux through the native pathway increased tobacco growth

rate, resulting in a >40% increase in biomass at the time of harvest

during exponential growth. The alternative pathway also increased

light use efficiency of photosynthesis by 17% in the field (South,

Cavanagh, Liu, & Ort, 2019). Similarly, an alternative photorespiratory

pathway introduced into rice using three rice enzymes improved net

photosynthesis by 15–22%, which led to aboveground biomass

increases of 14–35% but inconsistent improvements in yield (Shen

et al., 2019). A third approach targets concentrating CO2 at the site

of Rubisco for increased fixation of CO2 versus O2. One way to

achieve this goal involves introducing cyanobacterial carboxysomes

into plant chloroplasts. In a recent study, simplified carboxysomes

were successfully produced in tobacco chloroplasts using a minimal

set of genes (Long et al., 2018). The technique represents a baseline

approach to fully functional carboxysome construction and introduc-

tion into plant chloroplasts. However, concentrating bicarbonate in

the chloroplast and isolating the conversion of bicarbonate to CO2

solely within the carboxysome are also required for the successful

concentration of CO2 at the site of Rubisco within these specialized

structures (Price & Howitt, 2014). Another strategy to increase CO2

concentrations at Rubisco involves converting C3 photosynthesis to

C4, which is currently underway in rice (Lin, Coe, Quick, &

Bandyopadhyay, 2019; von Caemmerer, Quick, & Furbank, 2012;

Wang et al., 2017). Although all of these strategies represent
substantial advances in limiting the detrimental costs of photorespira-

tion, further progress is necessary to introduce these techniques into

important food crops while realizing consistent benefits to yields.
3.4 | Improving RuBP regeneration

RuBP regeneration will likely become more limiting to photosynthesis

under future climate scenarios with rising temperatures and elevated

CO2 (Long, Ainsworth, Rogers, & Ort, 2004). Previous modeling of

the carbon reduction cycle (C3 cycle) has shown limitations to RuBP

regeneration by key enzymes, including sedoheptulose‐1,7‐

bisphosphatase (SBP; Zhu, de Sturler, & Long, 2007). Expressing a

bifunctional cyanobacterial fructose‐1,6‐bisphosphatase (FBP)/SBP in

soybean grown in the field under both elevated CO2 and elevated

temperature significantly increased carbon assimilation (Köhler et al.,

2017; Rosenthal et al., 2011). At ambient CO2, overexpression of

SBP and fructose‐1,6‐bisphosphate aldolase (FBPA) increased biomass

in tobacco grown in the greenhouse (Simkin et al., 2017). A study in

Arabidopsis also showed significant increases in photosynthesis and

biomass with overexpression of SBP and FBPA, and adding the over-

expression of the glycolate H‐protein resulted in additive effects on

biomass, supporting the use of stacking genes for improving crop pro-

duction (Simkin et al., 2017), but this remains to be tested in crops.
4 | CONCLUSIONS

Although there have been substantial improvements in the past few

years to enhancing carboxylation of RuBP by Rubisco that will lead

to increased productivity at higher temperatures, many of these

approaches have yet to be realized in food crops with consistent pos-

itive impacts on yield. Other strategies may also be necessary to

improve productivity in a warming world, such as introducing novel sal-

vage pathways for photorespiratory products, either in parallel or in

place of current plant mechanisms (Bar‐Even, 2018; Ort et al., 2015).
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