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Abstract. Photosynthesis and crop growth are inseparable processes that govern plant carbon assimilation and allocation. An accurate model
description of these processes can bridge dynamics at the leaf and canopy levels, assisting in identifying potential photosynthetic improvements
that can be converted into increased yield. Integrating multiscale biophysical processes and achieving computational effectiveness for seasonal
simulations, however, are challenging. Here, we present a fully coupled modelling framework that integrates a metabolic model of C3 photo-
synthesis (ePhotosynthesis) and a semi-mechanistic crop growth model (BioCro). We replaced the leaf-level Farquhar photosynthesis model
in BioCro with the ePhotosynthesis model that mechanistically describes the photosystem electron transport processes and the C3 carbon
metabolism including the Calvin-Benson-Bassham cycle and the photorespiratory pathway. The coupled BioCro-ePhotosynthesis model was
calibrated to represent a soybean cultivar and developed to be operationally fast for seasonal simulations. As an example of model application, we
conducted a global sensitivity analysis of 26 enzymes under an average daytime intercepted radiation of 400 yumol m s, identifying 2 enzymes,
phosphoglycerate kinase (PGK) and phosphoribulokinase (PRK), which had the largest impact on the leaf-level assimilation. Increasing PGK
and PRK by 2-fold was predicted to increase the leaf-level assimilation by 8.3 % and the final seed yield by 6.75 % + 0.5 % over 4 years of observed
field climate data. The coupled BioCro-ePhotosynthesis model provides a seamless and efficient integration between the leaf-level metabolism
and the field-level yield over a full growing season. The coupled model could be further applied to investigate non-steady-state photosynthetic
processes such as non-photochemical quenching,

KEYWORDS: C3 photosynthesis; crop growth model; field climate conditions; metabolic model; multiscale crop model; soybean yield.

1. INTRODUCTION identify engineering targets that are predicted to improve yield
and not just gene expression or leaf-level photosynthesis.

There has been growing interest in developing models that can
Recent studies have used multiscale models to examine the

accurately predict crop photosynthesis and yield across differ- X - ]
ent scales, from individual leaves to whole fields and from sub- connection between leaf-lfevel photosynthesls Wlt}" crop y%eld
seconds to a full growing season (Marshall-Colon et al. 2017; and to evaluate how changing photosynthesis may impact yield

Peng et al. 2020; Matthews and Marshall-Colén 2021). A under different climate conditions (Wu et al. 2019; Moore et al.
’ 2021; He and Matthews 2023). However, the leaf photosyn-

thesis in these models all use a steady-state biochemical model,
commonly known as the Farquhar-von Caemmerer—Berry
(FvCB) model (von Caemmerer 2000). The simplicity and
robustness of the FvCB model allow it to be used in a variety
of scenarios. However, the FvCB model does not include the
individual photosynthetic reactions and, therefore, is not able
to simulate how changing the kinetic properties of these reac-
tions impact assimilation rates. Furthermore, the FvCB model

multiscale model is essential to connecting these scales and
understanding the complex interactions among genotype, envi-
ronment and management. Although mechanistic models have
been developed to describe gene regulation, metabolic path-
ways, organ development and canopy microclimates, they are
often used at their respective scales and thus miss interactions
between systems (Long et al. 2015). Multiscale models have
the potential to provide a direct link between genetic modifica-
tions and yield (Wang ef al. 2019), allowing us to use models to
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assumes steady-state conditions and is not able to simulate the
non-steady-state dynamics that are caused by highly heteroge-
neous canopy properties and microclimate conditions. In fact,
photosynthesis in real-world conditions is rarely at steady-state
and there are more than 60 reactions involved in the Calvin-
Bensen-Bassham (CBB) cycle, electron transport, photorespi-
ratory metabolism and storage and transport of carbohydrates,
starch and sucrose (Zhu et al. 2007, 2013; Long et al. 2015).

A more detailed model of these photosynthetic reactions was
developed using enzymatic kinetics and differential equations
(Zhu et al. 2007, 2013). This dynamic model was successfully
used to identify potential enzymes to target to increase leaf-level
photosynthetic rates, which was then validated in transgenic
tobacco experiments (Rosenthal et al. 2011; Lépez-Calcagno
et al. 2020). Dynamic metabolic models are useful to identify
potential metabolic engineering strategies, but they alone can-
not predict how modifying the pathways would impact yield
under highly varying field conditions (Matthews and Marshall-
Colén 2021). To understand how metabolic engineering strat-
egies will impact crop growth and yield, the detailed metabolic
model needs to be coupled with a crop growth model. Such an
in-silico model framework would allow system-wide assessment
of photosynthesis and yield across scales from seconds to a full
growing season, and from individual leaves to canopies.

In this paper, we present a coupled modelling framework
that integrates a dynamic model of C3 photosynthesis, ePhoto-
synthesis (Zhu et al. 2007, 2013) and a semi-mechanistic crop
growth model, BioCro (Lochocki ef al. 2022; Matthews et al.
2022). The coupled BioCro-ePhotosynthesis model bridges the
enzymatic activities of a single leaf with the final crop yield on a
field scale. The coupled model is parameterised and calibrated
to represent a soybean cultivar. We first show the validity of the
model by comparing it with the widely used FvCB model at the
leaf level and the canopy level with the standalone BioCro that
has the FvCB model incorporated. Using an example of increas-
ing specific CBB enzymatic rates, we demonstrate the predicted
impact of the resulting increase in the leaf-level assimilation
on the canopy-level assimilation and the final soybean yield.
Other use cases for the coupled BioCro-ePhotosynthesis model,
including other crop types and non-steady-state photosynthesis
simulations, are discussed.

2. METHODS AND MODEL DESCRIPTION
2.1 ePhotosynthesis

ePhotosynthesis is a generic dynamic model that describes
C3 photosynthesis processes including metabolic pathways of
the CBB Cycle, photorespiration, sucrose and starch synthesis
metabolic pathway (Zhu et al. 2013). It was recently calibrated
to fit the observed photosynthetic parameters, the maximum
carboxylation rate of Rubisco (me) and the maximum elec-
tron transport and RuBP regeneration rate (] ) for soybean
(Shameer et al. 2022) using two scaling factors that adjust the
maximum activities of several key enzymes [see Supporting
Information—Table S1]. This approach is based on an assump-
tion that under low internal CO, concentration (Ci), Rubisco is
the only enzyme limiting photosynthetic rates, while under high
Ci, every other enzyme in the CBB cycle may play a limiting role.

We adopted this method and calibrated the standalone ePho-
tosynthesis model against a V. (=110 pmol m™s™) and J
(=195 pmol m™ s™') that were measured from the A-Ci curves
of field grown soybean (Bernacchi et al. 2005). We used the
Plantecophys R package (Duursma 2015) to derive the values of
Vv, and] from the ePhotosynthesis model simulated A-Ci
curves at steady state. The A-Ci curves were generated by sim-
ulations with a light intensity of 1500 ymol m™ s™ and Ci levels
of 100, 150, 200, 250, 300, 400, 500, 600, 800, and 1200 ppm.
The two scaling factors Qirupico and g [see Supporting
Information—Table S1] were optimised to be 0.87 and 1.03,
respectively.

Following Zhu et al. (2013, 2007), the total phosphate con-
centration in the stroma was assumed to be constant of 30 mmol
L' so that the phosphate is high enough to not be a limiting
factor. All enzyme kinetic parameters in the ePhotosynthesis
model are for 25 °C. The ePhotosynthesis uses a Q10 function
to model the temperature-dependent response for each enzyme
reaction rate in the CBB cycle from their rates at 25 °C as
Vinax = Vinaas X Q10(T25)/10 (Woodrow and Berry 1988;
Kannan et al. 2019). For most enzymes, the Q10 parameter was
assumed to be 2 unless the literature supported another value
[see Supporting Information—Table S2].

2.2 Soybean-BioCro

Soybean-BioCro is a canopy-scale crop growth model that is
part of the BioCro family of crop models (Lochocki et al. 2022;
Matthews et al. 2022). By default, Soybean-BioCro incorporates
the FvCB model of photosynthesis and the Ball-Berry stomatal
conductance model to estimate the total canopy assimilation
from a 10-layer canopy that contains both sunlit and shaded
leaves. Each layer has its own microclimate that includes layer-
dependent solar radiation, temperature, relative humidity and
leaf area index. Soybean-BioCro partitions this assimilated car-
bon to the different crop organs based on the photothermal devel-
opment rate. The growth and senescence of the crop biomasses
are estimated at an hourly time step and integrated throughout
the growing season (Matthews et al. 2022). The model calibra-
tion and validation for Soybean-BioCro was conducted against 4
years of observed climate data (i.e. 2002, 2004, 2005 and 2006)
with soybean biomass measurements (cv. Pioneer 93BIS)
collected at the SoyFACE facility (40.04°N, 88.23°W) at the
University of Illinois Urbana-Champaign (Morgan et al. 200S;
Matthews et al. 2022).

Here, we updated Soybean-BioCro by separating the total
pod biomass from the original version (Matthews et al. 2022)
into its seed and shell components to more easily compare
model predictions with observed yield data that often report
the seed biomass only. The carbon partitioning coefficients with
added seed components were re-optimised [see Supporting
Information—Table S3], and the same 4-year data (2002,
2004, 2005 and 2006) were used to evaluate the model perfor-
mance [see Supporting Information—Fig. S1].

2.3 The coupled BioCro-ePhotosynthesis
The ePhotosynthesis model is an ordinary differential equation
(ODE)-based dynamic system, originally written in Matlab (Zhu
et al. 2013). We translated the entire model from Matlab to C++

20z AINF |1 uo 1sanb Aq 96,969./6009E1p/S)UEIOdIISU/EE0 L 0 L/I0P/3[0IE-00UBADE/S)UEIdOOI|ISUI/WOY"dNO"DIWSPEDE//:SANY WO} PAPEOjUMOQ


http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data

to improve model performance, particularly the model runtime,
and to more easily couple the model with BioCro, which is coded
in C++. The ePhotosynthesis C++ model uses the CVODE
solver from the Sundials software (Gardner et al. 2022) to solve
the ODE equations. The coupled Soybean-BioCro and ePho-
tosynthesis models, referred to as the BioCro-ePhotosynthesis
model hereafter, were developed by first compiling ePhotosyn-
thesis as a C++ dynamic library that is directly called as a func-
tion in the BioCro’s C3 leaf photosynthesis module. We replaced
the FvCB model for solving the steady-state leaf-level photosyn-
thesis in BioCro with a function that calls the ePhotosynthesis
model and returns the steady-state assimilation. As with the
FvCB model, the outputs from the ePhotosynthesis model were
coupled with the Ball-Berry stomatal conductance model to find
an equilibrium solution of Ci and the net assimilation (An) at
the leaf level.

Since the BioCro model is typically run on an hourly time
step that is much larger than the time (~60's) required for a
metabolite to reach its steady state (Zhu et al. 2007), we mainly
used the steady-state assimilation from ePhotosynthesis within
BioCro. Although the non-steady-state metabolites were not
explicitly output in the current version of the coupled model,
the ePhotosynthesis model does preserve all of the metabolite
concentrations before a steady state is reached. With our cou-
pled framework, one can easily modify the canopy module to
access the non-steady-state concentrations, which could then
be used with higher-frequency climate drivers than the current
hourly time step.

2.4 Enzyme sensitivity experiments at the leaflevel

We used the Latin Hypercube Sampling-Partial Rank
Correlation Coefficient (LHS-PRCC) to conduct a sensitivity
analysis of multiple enzymes at the leaf level using the ePhoto-
synthesis model. Both the LHS and PRCC functions are directly
available in Matlab. LHS is a highly efficient sampling technique
when dealing with large sample sizes (Blower and Dowlatabadi
1994). PRCC was then used to quantify the relative importance
of each enzyme to changes in the leaf-level assimilation rate. A
total of 26 enzymes in the photorespiration pathway and the
CBB cycle [see Supporting Information—Tables S1 and S4]
were investigated in the sensitivity analyses under the follow-
ing environmental conditions: photosynthetically active radi-
ation (PAR) = 400 pmol m™ s7!, leaf temperature = 24 °C and
Ci = 294 ppm. A relatively low PAR level was used to represent
the simulated average daytime radiation received by leaves in the
multilayer canopy.

2.5 Simulating full growing seasons
As an example of using the coupled BioCro-ePhotosynthesis
model, we simulated full growing seasons for 4 years (2002,
2004, 2005 and 2006), the same years used in the original
Soybean-BioCro simulations (Matthews et al. 2022). We first
compared the canopy assimilation and yield between the
coupled BioCro-ePhotosynthesis model and the standalone
Soybean-BioCro model to confirm that the coupled model
was functioning properly and had similar predictions to the
standalone Soybean-BioCro model. We then used the BioCro-
ePhotosynthesis model to estimate the yield response when two
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enzymes identified from the enzyme sensitivity analysis, phos-
phoglycerate kinase (PGK) and phosphoribulokinase (PRK),
were increased two-fold (i.e. 200 %). A 2-fold increase was
chosen as the max limit as 2 to 3-fold increases of other CBB
enzymes have been experimentally achieved (Ku et al. 2000;
Simkin et al. 2015).

3 RESULTS

The ePhotosynthesis C++ model showed a significant improve-
ment in computational performance over its Matlab counter-
part. For a single evaluation of the leaf-level assimilation, the
ePhotosynthesis C++ and Matlab versions took about 0.075
and Ss, respectively [see Supporting Information—Table
S5]. The time required for a full growing season simulation was
approximated to be 3.9 and 260 h, respectively [see Supporting
Information—Table SS]. The performance of the coupled
BioCro-ePhotosynthesis (~6 h) was close to the estimation of
the C++ version for a growing season simulation, about 40 times
faster than that with the Matlab version. The coupled model took
longer to run than the approximation due to how the photosyn-
thesis and stomatal conductance calculations are coupled, which
can require multiple calls to the ePhotosynthesis model for a
given time step.

3.1 Model consistency at steady-state: ePhotosynthesis
verses FvCB and BioCro-ePhotosynthesis verses BioCro
Since the leaf-level net assimilation (An) predicted by ePhoto-
synthesis was calibrated against the same V, and ] used by
the FvCB model, their A-Ci curves matched well under the high
light condition with an incoming PAR (Q) of 1500 ymol m=2s~!
(Fig. 1A). At a lower light level of 400 ymol m™ ™!, the ePhoto-
synthesis model predicted similar An as the FvCB model at high
Ci levels, but predicted slightly higher An (+ 0.33 pmol m™2s7)
at Ci less than 600 ppm (Fig. 1B). The light level of 400 pmol
m™ s™' was selected for this comparison because the average
simulated daytime radiation intercepted by the soybean leaves
in Soybean-BioCro’s multilayer canopy was approximately this
intensity. Overall, the two models showed small differences
in An at different light intensity levels with an average of 0.77
pumol m™ s higher predicted by the ePhotosynthesis model
(Fig. 1C). There were also small differences in the temperature
responses of the two models at a 400 umol m™ s~ light intensity
(Fig. 1D). A larger difference between the model predictions
occurred when the temperatures became less than 20 °C, with
the ePhotosynthesis model predicting an An about 2.7 pmol m™
s™! greater than the FvCB model. For leaf temperatures greater
than 20 °C, however, the difference between the two models was
less pronounced (Fig. 1D). With an average air temperature at
our study site of approximately 22 + 5 °C over the growing sea-

son, the difference at lower temperatures had little impact.

At the canopy level, the coupled BioCro-ePhotosynthesis model
predicted slightly higher An than the standalone BioCro. The
cumulative An at the end of the growing season was 12.9 t/ha for
BioCro-ePhotosynthesis and 12.3 t/ha for BioCro (Fig. 2A). Little
difference was observed at the early growing season (Fig. 2B,C)
and larger differences occurred at the late growing season as the
difference accumulated over time (Fig. 2D). The difference was
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also mostly seen during the middle of a day when there was high
radiation (Fig. 2D). This difference in the canopy An between the
two models originated mostly from the difference in the leaf-level
An (Fig. 1). Although a larger leaf area index was predicted by the
coupled model, the difference was too small to have a significant
impact on the canopy An [see Supporting Information—Fig.
S2]. Similar to the increase in the canopy An, a slightly increased
stomatal conductance was also predicted by the coupled model at
the canopy level [ see Supporting Information—Fig. S3].

3.2 Model application: a 2-fold increase in PGK and PRK
concentrations results in a predicted 8.3 % increase in leaf-
level assimilation rates

Among the 26 enzyme reactions that were investigated
in the sensitivity analysis, reactions V1 (Rubisco), V2
(Phosphoglycerate kinase or PGK), VS (FBP Aldolase), V9
(Sedoheptulose-bisphosphatase), V10 (Transketolase) and V13
(Phosphoribulokinase or PRK) were found to have the largest
influence on An when PAR was set to 400 pmol m™ s, Ci was
set to 294 ppm and leaf temperature was set to 24 °C (Fig. 3).
Increasing the six enzyme concentrations up to 2-fold, all at once

Rubisco V1

PGK V2

GAPDH V3

Aldolase V5

FBPase V6
Transketolase V7

FBPA V8

SBPase V9
Transketolase V10

PRK V13

AGPase V23

ATP Synthase V16

PGP V112

Glycerate kinase V113
Glycolate oxidase Vi21

SGAT V122

NADH-HPR V123

GGAT V124

GLDC V131

DHAP+GAP <> FBP V51

FBPc <> F6Pc + Pic V52
G1Pc + UTPc <> GDPc + UDPGec V55
UDPGc + F6Pc ¢ SUCPc+ UDPc V56
SUCPc ¢ Pic + SUCc V57
F26BPc &> F6Pc + Pic V58
F6Pc + ATPc <> F26BPc + ADPc V59
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and in different combinations, resulted in predicted increases
in An up to 9.3 % [see Supporting Information—Fig. S4].
Among these enzymes, PGK and PRK were found to be essen-
tial targets to achieve an increase in An greater than 8% because
they were the only two enzymes that needed to be increased by
atleast 1.6-fold in all cases [see Supporting Information—Fig.
S5]. In comparison, there were simulations where any of the
other four enzymes could remain at control levels and still result
in an 8 % increase in An [[see Supporting Information—Fig.
S5]. Increasing both PGK and PRK 2-fold in the model led to a
predicted 8.3 % increase in An at the leaf level at Ci of ~300 ppm
[see Supporting Information—Fig. S6A]. Little difference
was found between the wildtype and doubled PGK-PRK under
the high light condition with PAR of 1500 pmol m™ s™! [see
Supporting Information—Fig. S6B].

3.3 Model application: a 2-fold increase in PGK and PRK
concentrations results in a predicted 7 % increase in soybean
yield
Using the coupled BioCro-ePhotosynthesis model, we simu-
lated the impacts of the 2-fold increase in the PGK and PRK

| ek
| |

|
k.
¥

| T | |
Q & ™, ©
o o o S

Partial rank correlation coefficient

Figure 3. LHS-PRCC of key enzyme reactions in the photorespiration and CBB cycle pathways. The driving environmental conditions were,
PAR =400 pmol m s, Ci = 294 ppm and leaf temperature = 24 °C. The description of the enzyme reactions’ abbreviations can be found in

Supporting Information—Table S6.
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enzyme concentrations on crop growth over four growing sea-
sons, 2002, 2004, 2005 and 2006. The cumulative canopy An
at the season end of the 2006 growing season was predicted
to be 12.9 t/ha for the wildtype and 13.6 t/ha when PGK and
PRK were increased 2-fold (Fig. 4A). The increases in An were
observed throughout the season and were the most significant
during the middle of the day when the canopy experienced high
light (Fig. 4B-D). There was also a notable increase in canopy
stomatal conductance observed during midday, coinciding with
elevated levels of PGK and PRK enzymes [see Supporting
Information—Fig. S7].

Larger biomasses were further observed in all the soybean
organs, including leaf, stem, seed and shell (Fig. 5). The wild-
type predicted seed yield was 5.4 t/ha. When PGK and PRK
were increased 2-fold, the predicted yield increased to 5.8 t/ha,
a7 % yield increase. Similar yield increases were also observed
in the other years ranging from a 6.2 % increase in 2004 to a
7.3 % increase in 2002 (Fig. 6). On average, increasing the con-
centration of the PGK and PRK enzymes two-fold resulted in
a 6.75% £ 0.5 % predicted increase in seed yield over the four
growing seasons.

4 DISCUSSION

4.1 The coupled BioCro-ePhotosynthesis model can
efficiently simulate a detailed metabolic pathway at the field-
scale over full growing seasons
Crop photosynthesis and growth are complex processes.
Simulating their interactions requires a fully coupled model
to bridge processes at different scales. The coupled model
framework presented here incorporates a detailed kinetic C3
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photosynthesis model (ePhotosynthesis) and a crop growth
model (BioCro), which allows a seamless and efficient connec-
tion between the leaf-level metabolic activities that occur over
seconds and the field-level crop growth and yield production
that occurs over a full growing season. By translating the ePho-
tosynthesis model to C++, the coupled model is able to simu-
late a full growing season within an operationally useful time
frame of about 6 h [see Supporting Information—Table S5].
Performance could be further sped up in the future by using par-
allelisation strategies to distribute the multilayer canopy photo-
synthesis calculations across multiple CPU cores.

We demonstrated one application of the model, where chang-
ing the concentration levels of two enzymes led to an increase
in the final predicted yield. Previous studies often conducted
experiments under high-light conditions. Our sensitivity analy-
sis was under a rather low light condition with limited adeno-
sine triphosphate (ATP) and nicotinamide adenine dinucleotide
phosphate (NADPH) production. Therefore, the two enzymes,
PGK and PRK (V2 & V13) became predominated since both
enzymes are related to ATP consumption. Both PGK and
PRK have been found to impact photosynthesis and growth in
C3 crops (Paul et al. 199S; Rosa-Téllez et al. 2018). Although
increasing PGK and PRK specifically has yet to be explored, pre-
vious studies have shown the potential of overexpressing them,
possibly combined with other enzymes in the CBB cycle, to
increase photosynthesis (Raines 2022; Yin et al. 2022). SBPase
and Aldolase (V9 & V5) have received greater attention in pre-
vious research (Rosenthal ef al. 2011; Simkin et al. 2015) in the
context of another C3 crop, tobacco. The two enzymes were also
found to be significant, mostly requiring an increase of at least
1.3-fold [see Supporting Information—Fig. SS]. In contrast,
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Figure 4 Comparing canopy An for the 2006 growing season between the wildtype and increased PGK and PRK simulations. (A) Cumulative
An throughout the growing season. (B-D) Hourly diurnal changes of An on the days 180 210, and 240.
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growing seasons.

Rubisco (V1) and Transketolase (V10) exhibited more uniform
distributions [see Supporting Information—Fig. SS].

4.2 The coupled model can be easily expanded to simulate
other C3 and C4 crops

The coupled model can be applied to other crops without much
effort needed for additional model development. Both ePhoto-
synthesis and BioCro were designed to be adjustable for generic
crop types. In fact, ePhotosynthesis has been applied to several
C3 crops including tobacco (Rosenthal et al. 2011), soybean
(Shameer et al. 2022) and cassava (De Souza et al. 2020), and
has also been expanded to model C4 crops including sorghum

and maize (Wang et al. 2021). BioCro has also been used to sim-
ulate the growth of several C3 and C4 crops including soybean
(Matthews et al. 2022), Miscanthus (Miguez et al. 2009; He et
al. 2022) and sugarcane (Jaiswal et al. 2017). Any of these crops
could be simulated with some parameter changes using this cou-
pled BioCro-ePhotosynthesis framework.

4.3 The importance of evaluating the rate-limiting reactions
at canopy level

We demonstrated the general sensitivity of leaf-level An to
changes in 26 enzyme concentrations under a low-light environ-
mental condition (Fig. 3). The sensitivity results led us to double
the concentrations of PGK and PRK, causing increases in leaf-
level An and further in canopy An and yield (Figs. 4-6). There is
not a one-to-one relationship between the increase in leaf-level
An (8.3 %) to the increase in the cumulative canopy An (5.75
% + 0.38 %) or the final yield (6.75 % * 0.5 %), demonstrating
the importance of using multiscale models to connect improve-
ments at the leaf-level to the field-scale crop outputs.

Although the leaf-level sensitivity is useful in identifying
potential enzymes that may eventually transfer to improvements
at the canopy level, it may not be the most optimal choice since
the canopy has more heterogeneity in its microclimate and leaf
properties. For example, light received by the bottom and top
leaves differ (He and Matthews 2023), and considering only
an average daytime light for the entire canopy in the sensitivity
analysis may be an oversimplification. In addition, the incom-
ing radiation intercepted by the different parts of the canopy
changes rapidly within a day, and the reactions that are limiting
An may be different under these varying conditions. Further,
water and nitrogen availability can also impact photosynthesis
and yield at different stages of crop growth (Wu et al. 2023). The
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soybean-BioCro model used in this study assumed abundant
water and nitrogen conditions, which may be reasonable for
the specific site but could overestimate yield gain in locations
with less favourable conditions. Future work with the BioCro-
ePhotosynthesis model will include conducting a more com-
prehensive sensitivity analysis to identify the limiting enzymatic
reactions at the canopy level, which may further improve the

final yield.

4.4 Use the coupled model to incorporate non-steady-state
photosynthesis at the field-scale

Simulating non-steady-state photosynthesis is another key
application of the coupled model. Recent advances in non-
steady-state photosynthesis focus mainly on the photosyn-
thetic response to fluctuating light (Long et al. 2022), which
is related to a protective mechanism in plants known as non-
photochemical quenching (NPQ). Existing models have been
developed to represent the dynamics of chlorophyll fluores-
cence excitation, electron transport and heat dissipation in the
photosystem II supercomplex (Zaks et al. 2012; Zhu et al. 2013).
However, similar to the standalone ePhotosynthesis they are not
capable of directly evaluating the impact of NPQ on the canopy
CO, assimilation. The coupled BioCro-ePhotosynthesis model
provides a more comprehensive model framework to integrate
NPQ into a full crop photosynthesis and growth model.

While the coupled model is set up to be able to handle non-
steady-state dynamics, some challenges remain to using it to
study the impacts of non-steady-state photosynthesis at the
field-scale. One challenge is the need for high-frequency envi-
ronmental data, particularly light interception throughout the
canopy. The high-frequency inputs would significantly increase
the computation time, especially for an entire growing season.
Efforts to improve the parallelisation of the canopy photo-
synthesis calculations to speed up computation time could
address this challenge. Another related challenge is the need
for a detailed radiation and canopy structural representation
over a growing season that captures the high frequency light
intensity interception by individual leaves. There have been
several efforts in recent years to develop such models (Song et
al. 2017; Acevedo-Siaca et al. 2020; Wang et al. 2020; Zhen et
al. 2022), but more work advancing field light measurements,
ray-tracers and high-performance computing resources are
needed before these models would be suitable for examining
non-steady-state dynamics at the field-scale over a growing
season.

4.5 Towards a flexible multidisciplinary model framework

The development of the coupled BioCro-ePhotosynthesis
model has involved a range of expertise in biology from cell to
whole plant levels, as well as in climate and computer science.
The BioCro-ePhotosynthesis model framework can be used to
investigate dynamics at the metabolite level and connect to crop
growth at the canopy level. However, the users will still need to
tailor the model to their own needs by conducting new param-
eterization, adding functions and extracting necessary model
information. The coupled BioCro-ePhotosynthesis model could
be further extended to include new plants, other metabolic pro-
cesses, regulatory pathways or additional ecosystem dynamics.
A collective community effort is crucial to advance, develop and

apply the model to answer the many open questions around
engineering crops for the future.

SUPPORTING INFORMATION

The following additional information is available in the online
version of this article —

Figure S1. Model calibration and validation of the updated
Soybean-BioCro that separates the pod biomass into the seed
and shell biomasses. Four years of data were used: (A) 2002, (B)
2004, (C) 2005 and (D) 2006. Points are the observed data at
ambient CO, (372 ppm) and lines are the model results. The car-
bon partitioning coeflicients with added seed components were
re-optimized using years 2002 and 2005 following the same
method used in the original study (Matthews et al. 2022). The
same four year data were then used to evaluate the model per-
formance. The validation of the original Soybean BioCro version
with the pod component can be found in (Matthews et al. 2022).

Figure S2. (A) Comparing the leaf area index (LAI) between
the BioCro-ePhotosynthesis and the standalone BioCro for the
2006 growing season. (B) Comparing the hourly LAI between
the BioCro ePhotosynthesis and the standalone BioCro on DOY
240. (C) Comparing the hourly LAI during the daytime on DOY
240 among three simulations: (1) BioCro-ePhotosynthesis; (2)
the standalone BioCro; and (3) a BioCro simulation with the
initial state of soybean (e.g. larger LAI) at the last hour of DOY
239 by the BioCro-ePhotosynthesis (dashed red line). This test
suggests that the slightly larger LAI only contributed to a small
part of the total difference we observed in the canopy An on
DOY 240 (see Fig. 2D).

Figure 83. Comparing the canopy-level stomatal conduct-
ance between BioCro-ePhotosynthesis and BioCro. (A) cumu-
lative canopy conductance during the 2006 growing season.
(B-D) Hourly diurnal changes of canopy conductance on the
days 180, 210, and 240.

Figure S4. Frequency distribution of the changes in An (%)
due to the changes in six enzyme concentrations associated with
reactions V1, V2,VS5,V9,V10 and V13. Each enzyme was scaled
up by factors of 1, 1.3, 1.6, and 1.9, resulting in a total combi-
nation of 4096. Enzyme descriptions can be found in Table S1.
Red-circled bars represent the An changes that are larger than
8%, totaling 408 combinations.

Figure SS. Frequency distributions of each scaling factor
for the six enzymes that resulted in an increase in An by more
than 8% (Fig. S4). Enzyme reaction descriptions can be found
in Table S1.

Figure $6. Comparing A-Ci curves between the wildtype and
doubled PRK and PRK under (A) alow light of 400 pmol m s
and (B) a high light of 1500 pmol m~*"". The leaf temperature
was set to be 25 °C.

Figure 87. Comparing the canopy-level stomatal conduct-
ance between the wildtype (black) and increased PGK and PRK
(red) simulations. (A) cumulative canopy conductance during
the 2006 growing season. (B-D) Hourly diurnal changes of can-
opy conductance on the days 180, 210, and 240.

Table S1. Scaling factors for the maximum enzyme reaction
rates in the ePhotosynthesis model

Table S2. The Q10 values used in the ePhotosynthesis model
to describe the temperature response of each enzyme.
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Table §3. Comparing the parameters that were re-optimized
in the updated version of BioCro. The updated BioCro separated
the Pod into Shell and Leaf.

Table S4. In addition to Table S1, descriptions of more
enzymes used in the ePhotosynthesis model for the enzyme sen-
sitivity analysis.

Table SS. Estimated computational time needed for the three
models: ePhotosynthesis Matlab, ePhotosynthesis C++, and the
fully coupled BioCro-ePhotosynthesis. The canopy evaluation
and whole-season evaluation are simple estimations from the
single evaluation. The canopy evaluation assumes 3 iterations in
the FvCB and Ball-Berry coupling and 10 layers each for sunlit
and shaded leaves, thus 60 times longer than the single evalua-
tion. The whole season assumes 130 days. Actual computational
time may vary with machine configurations.

Table S6. List of abbreviations for enzymes and their reac-
tions (Tables S1 and S4).
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