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Abstract. Photosynthesis and crop growth are inseparable processes that govern plant carbon assimilation and allocation. An accurate model 
description of these processes can bridge dynamics at the leaf and canopy levels, assisting in identifying potential photosynthetic improvements 
that can be converted into increased yield. Integrating multiscale biophysical processes and achieving computational effectiveness for seasonal 
simulations, however, are challenging. Here, we present a fully coupled modelling framework that integrates a metabolic model of C3 photo-
synthesis (ePhotosynthesis) and a semi-mechanistic crop growth model (BioCro). We replaced the leaf-level Farquhar photosynthesis model 
in BioCro with the ePhotosynthesis model that mechanistically describes the photosystem electron transport processes and the C3 carbon 
metabolism including the Calvin–Benson–Bassham cycle and the photorespiratory pathway. The coupled BioCro-ePhotosynthesis model was 
calibrated to represent a soybean cultivar and developed to be operationally fast for seasonal simulations. As an example of model application, we 
conducted a global sensitivity analysis of 26 enzymes under an average daytime intercepted radiation of 400 µmol m−2 s−1, identifying 2 enzymes, 
phosphoglycerate kinase (PGK) and phosphoribulokinase (PRK), which had the largest impact on the leaf-level assimilation. Increasing PGK 
and PRK by 2-fold was predicted to increase the leaf-level assimilation by 8.3 % and the final seed yield by 6.75 % ± 0.5 % over 4 years of observed 
field climate data. The coupled BioCro-ePhotosynthesis model provides a seamless and efficient integration between the leaf-level metabolism 
and the field-level yield over a full growing season. The coupled model could be further applied to investigate non-steady-state photosynthetic 
processes such as non-photochemical quenching.
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1.   I N T RO D U CT I O N
There has been growing interest in developing models that can 
accurately predict crop photosynthesis and yield across differ-
ent scales, from individual leaves to whole fields and from sub- 
seconds to a full growing season (Marshall-Colon et al. 2017; 
Peng et al. 2020; Matthews and Marshall-Colón 2021). A 
multiscale model is essential to connecting these scales and 
understanding the complex interactions among genotype, envi-
ronment and management. Although mechanistic models have 
been developed to describe gene regulation, metabolic path-
ways, organ development and canopy microclimates, they are 
often used at their respective scales and thus miss interactions 
between systems (Long et al. 2015). Multiscale models have 
the potential to provide a direct link between genetic modifica-
tions and yield (Wang et al. 2019), allowing us to use models to 

identify engineering targets that are predicted to improve yield 
and not just gene expression or leaf-level photosynthesis.

Recent studies have used multiscale models to examine the 
connection between leaf-level photosynthesis with crop yield 
and to evaluate how changing photosynthesis may impact yield 
under different climate conditions (Wu et al. 2019; Moore et al. 
2021; He and Matthews 2023). However, the leaf photosyn-
thesis in these models all use a steady-state biochemical model, 
commonly known as the Farquhar–von Caemmerer–Berry 
(FvCB) model (von Caemmerer 2000). The simplicity and 
robustness of the FvCB model allow it to be used in a variety 
of scenarios. However, the FvCB model does not include the 
individual photosynthetic reactions and, therefore, is not able 
to simulate how changing the kinetic properties of these reac-
tions impact assimilation rates. Furthermore, the FvCB model 
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assumes steady-state conditions and is not able to simulate the 
non-steady-state dynamics that are caused by highly heteroge-
neous canopy properties and microclimate conditions. In fact, 
photosynthesis in real-world conditions is rarely at steady-state 
and there are more than 60 reactions involved in the Calvin–
Bensen-Bassham (CBB) cycle, electron transport, photorespi-
ratory metabolism and storage and transport of carbohydrates, 
starch and sucrose (Zhu et al. 2007, 2013; Long et al. 2015).

A more detailed model of these photosynthetic reactions was 
developed using enzymatic kinetics and differential equations 
(Zhu et al. 2007, 2013). This dynamic model was successfully 
used to identify potential enzymes to target to increase leaf-level 
photosynthetic rates, which was then validated in transgenic 
tobacco experiments (Rosenthal et al. 2011; López-Calcagno 
et al. 2020). Dynamic metabolic models are useful to identify 
potential metabolic engineering strategies, but they alone can-
not predict how modifying the pathways would impact yield 
under highly varying field conditions (Matthews and Marshall-
Colón 2021). To understand how metabolic engineering strat-
egies will impact crop growth and yield, the detailed metabolic 
model needs to be coupled with a crop growth model. Such an 
in-silico model framework would allow system-wide assessment 
of photosynthesis and yield across scales from seconds to a full 
growing season, and from individual leaves to canopies.

In this paper, we present a coupled modelling framework 
that integrates a dynamic model of C3 photosynthesis, ePhoto-
synthesis (Zhu et al. 2007, 2013) and a semi-mechanistic crop 
growth model, BioCro (Lochocki et al. 2022; Matthews et al. 
2022). The coupled BioCro-ePhotosynthesis model bridges the 
enzymatic activities of a single leaf with the final crop yield on a 
field scale. The coupled model is parameterised and calibrated 
to represent a soybean cultivar. We first show the validity of the 
model by comparing it with the widely used FvCB model at the 
leaf level and the canopy level with the standalone BioCro that 
has the FvCB model incorporated. Using an example of increas-
ing specific CBB enzymatic rates, we demonstrate the predicted 
impact of the resulting increase in the leaf-level assimilation 
on the canopy-level assimilation and the final soybean yield. 
Other use cases for the coupled BioCro-ePhotosynthesis model, 
including other crop types and non-steady-state photosynthesis 
simulations, are discussed.

2.   M ET H O D S  A N D  M O D E L  D E S CR I P T I O N
2.1  ePhotosynthesis

ePhotosynthesis is a generic dynamic model that describes 
C3 photosynthesis processes including metabolic pathways of 
the CBB Cycle, photorespiration, sucrose and starch synthesis 
metabolic pathway (Zhu et al. 2013). It was recently calibrated 
to fit the observed photosynthetic parameters, the maximum 
carboxylation rate of Rubisco (Vcmax) and the maximum elec-
tron transport and RuBP regeneration rate (Jmax) for soybean 
(Shameer et al. 2022) using two scaling factors that adjust the 
maximum activities of several key enzymes [see Supporting 
Information—Table S1]. This approach is based on an assump-
tion that under low internal CO2 concentration (Ci), Rubisco is 
the only enzyme limiting photosynthetic rates, while under high 
Ci, every other enzyme in the CBB cycle may play a limiting role. 

We adopted this method and calibrated the standalone ePho-
tosynthesis model against a Vcmax (=110 μmol m−2 s−1) and Jmax 
(=195 μmol m−2 s−1) that were measured from the A–Ci curves 
of field grown soybean (Bernacchi et al. 2005). We used the 
Plantecophys R package (Duursma 2015) to derive the values of 
Vcmax and Jmax from the ePhotosynthesis model simulated A–Ci 
curves at steady state. The A–Ci curves were generated by sim-
ulations with a light intensity of 1500 µmol m−2 s−1 and Ci levels 
of 100, 150, 200, 250, 300, 400, 500, 600, 800, and 1200 ppm. 
The two scaling factors αRubisco and αE  [see Supporting 
Information—Table S1] were optimised to be 0.87 and 1.03, 
respectively.

Following Zhu et al. (2013, 2007), the total phosphate con-
centration in the stroma was assumed to be constant of 30 mmol 
L−1 so that the phosphate is high enough to not be a limiting 
factor. All enzyme kinetic parameters in the ePhotosynthesis 
model are for 25 °C. The ePhotosynthesis uses a Q10 function 
to model the temperature-dependent response for each enzyme 
reaction rate in the CBB cycle from their rates at 25 °C as 
Vmax = Vmax25 × Q10(T−25)/10  (Woodrow and Berry 1988; 
Kannan et al. 2019). For most enzymes, the Q10 parameter was 
assumed to be 2 unless the literature supported another value 
[see Supporting Information—Table S2].

2.2  Soybean-BioCro
Soybean-BioCro is a canopy-scale crop growth model that is 
part of the BioCro family of crop models (Lochocki et al. 2022; 
Matthews et al. 2022). By default, Soybean-BioCro incorporates 
the FvCB model of photosynthesis and the Ball-Berry stomatal 
conductance model to estimate the total canopy assimilation 
from a 10-layer canopy that contains both sunlit and shaded 
leaves. Each layer has its own microclimate that includes layer- 
dependent solar radiation, temperature, relative humidity and 
leaf area index. Soybean-BioCro partitions this assimilated car-
bon to the different crop organs based on the photothermal devel-
opment rate. The growth and senescence of the crop biomasses 
are estimated at an hourly time step and integrated throughout 
the growing season (Matthews et al. 2022). The model calibra-
tion and validation for Soybean-BioCro was conducted against 4 
years of observed climate data (i.e. 2002, 2004, 2005 and 2006) 
with soybean biomass measurements (cv. Pioneer 93B15) 
collected at the SoyFACE facility (40.04°N, 88.23°W) at the 
University of Illinois Urbana-Champaign (Morgan et al. 2005; 
Matthews et al. 2022).

Here, we updated Soybean-BioCro by separating the total 
pod biomass from the original version (Matthews et al. 2022) 
into its seed and shell components to more easily compare 
model predictions with observed yield data that often report 
the seed biomass only. The carbon partitioning coefficients with 
added seed components were re-optimised [see Supporting 
Information—Table S3], and the same 4-year data (2002, 
2004, 2005 and 2006) were used to evaluate the model perfor-
mance [see Supporting Information—Fig. S1].

2.3  The coupled BioCro-ePhotosynthesis
The ePhotosynthesis model is an ordinary differential equation 
(ODE)-based dynamic system, originally written in Matlab (Zhu 
et al. 2013). We translated the entire model from Matlab to C++ 
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to improve model performance, particularly the model runtime, 
and to more easily couple the model with BioCro, which is coded 
in C++. The ePhotosynthesis C++ model uses the CVODE 
solver from the Sundials software (Gardner et al. 2022) to solve 
the ODE equations. The coupled Soybean-BioCro and ePho-
tosynthesis models, referred to as the BioCro-ePhotosynthesis 
model hereafter, were developed by first compiling ePhotosyn-
thesis as a C++ dynamic library that is directly called as a func-
tion in the BioCro’s C3 leaf photosynthesis module. We replaced 
the FvCB model for solving the steady-state leaf-level photosyn-
thesis in BioCro with a function that calls the ePhotosynthesis 
model and returns the steady-state assimilation. As with the 
FvCB model, the outputs from the ePhotosynthesis model were 
coupled with the Ball-Berry stomatal conductance model to find 
an equilibrium solution of Ci and the net assimilation (An) at 
the leaf level.

Since the BioCro model is typically run on an hourly time 
step that is much larger than the time (~60 s) required for a 
metabolite to reach its steady state (Zhu et al. 2007), we mainly 
used the steady-state assimilation from ePhotosynthesis within 
BioCro. Although the non-steady-state metabolites were not 
explicitly output in the current version of the coupled model, 
the ePhotosynthesis model does preserve all of the metabolite 
concentrations before a steady state is reached. With our cou-
pled framework, one can easily modify the canopy module to 
access the non-steady-state concentrations, which could then 
be used with higher-frequency climate drivers than the current 
hourly time step.

2.4  Enzyme sensitivity experiments at the leaf level
We used the Latin Hypercube Sampling-Partial Rank 
Correlation Coefficient (LHS-PRCC) to conduct a sensitivity 
analysis of multiple enzymes at the leaf level using the ePhoto-
synthesis model. Both the LHS and PRCC functions are directly 
available in Matlab. LHS is a highly efficient sampling technique 
when dealing with large sample sizes (Blower and Dowlatabadi 
1994). PRCC was then used to quantify the relative importance 
of each enzyme to changes in the leaf-level assimilation rate. A 
total of 26 enzymes in the photorespiration pathway and the 
CBB cycle [see Supporting Information—Tables S1 and S4] 
were investigated in the sensitivity analyses under the follow-
ing environmental conditions: photosynthetically active radi-
ation (PAR) = 400 µmol m−2 s−1, leaf temperature = 24 °C and 
Ci = 294 ppm. A relatively low PAR level was used to represent 
the simulated average daytime radiation received by leaves in the 
multilayer canopy.

2.5  Simulating full growing seasons
As an example of using the coupled BioCro-ePhotosynthesis 
model, we simulated full growing seasons for 4 years (2002, 
2004, 2005 and 2006), the same years used in the original 
Soybean-BioCro simulations (Matthews et al. 2022). We first 
compared the canopy assimilation and yield between the 
coupled BioCro-ePhotosynthesis model and the standalone 
Soybean-BioCro model to confirm that the coupled model 
was functioning properly and had similar predictions to the 
standalone Soybean-BioCro model. We then used the BioCro-
ePhotosynthesis model to estimate the yield response when two 

enzymes identified from the enzyme sensitivity analysis, phos-
phoglycerate kinase (PGK) and phosphoribulokinase (PRK), 
were increased two-fold (i.e. 200 %). A 2-fold increase was 
chosen as the max limit as 2 to 3-fold increases of other CBB 
enzymes have been experimentally achieved (Ku et al. 2000; 
Simkin et al. 2015).

3  R E SU LTS
The ePhotosynthesis C++ model showed a significant improve-
ment in computational performance over its Matlab counter-
part. For a single evaluation of the leaf-level assimilation, the 
ePhotosynthesis C++ and Matlab versions took about 0.075 
and 5 s, respectively [see Supporting Information—Table 
S5]. The time required for a full growing season simulation was 
approximated to be 3.9 and 260 h, respectively [see Supporting 
Information—Table S5]. The performance of the coupled 
BioCro-ePhotosynthesis (~6 h) was close to the estimation of 
the C++ version for a growing season simulation, about 40 times 
faster than that with the Matlab version. The coupled model took 
longer to run than the approximation due to how the photosyn-
thesis and stomatal conductance calculations are coupled, which 
can require multiple calls to the ePhotosynthesis model for a 
given time step.

3.1  Model consistency at steady-state: ePhotosynthesis 
verses FvCB and BioCro-ePhotosynthesis verses BioCro

Since the leaf-level net assimilation (An) predicted by ePhoto-
synthesis was calibrated against the same Vcmax and Jmax used by 
the FvCB model, their A-Ci curves matched well under the high 
light condition with an incoming PAR (Q) of 1500 µmol m−2 s−1 
(Fig. 1A). At a lower light level of 400 µmol m−2 s−1, the ePhoto-
synthesis model predicted similar An as the FvCB model at high 
Ci levels, but predicted slightly higher An (+ 0.33 µmol m−2 s−1) 
at Ci less than 600 ppm (Fig. 1B). The light level of 400 µmol 
m−2 s−1 was selected for this comparison because the average 
simulated daytime radiation intercepted by the soybean leaves 
in Soybean-BioCro’s multilayer canopy was approximately this 
intensity. Overall, the two models showed small differences 
in An at different light intensity levels with an average of 0.77 
µmol m−2 s−1 higher predicted by the ePhotosynthesis model 
(Fig. 1C). There were also small differences in the temperature 
responses of the two models at a 400 µmol m−2 s−1 light intensity 
(Fig. 1D). A larger difference between the model predictions 
occurred when the temperatures became less than 20 °C, with 
the ePhotosynthesis model predicting an An about 2.7 µmol m−2 
s−1 greater than the FvCB model. For leaf temperatures greater 
than 20 °C, however, the difference between the two models was 
less pronounced (Fig. 1D). With an average air temperature at 
our study site of approximately 22 ± 5 °C over the growing sea-
son, the difference at lower temperatures had little impact.

At the canopy level, the coupled BioCro-ePhotosynthesis model 
predicted slightly higher An than the standalone BioCro. The 
cumulative An at the end of the growing season was 12.9 t/ha for 
BioCro-ePhotosynthesis and 12.3 t/ha for BioCro (Fig. 2A). Little 
difference was observed at the early growing season (Fig. 2B,C) 
and larger differences occurred at the late growing season as the 
difference accumulated over time (Fig. 2D). The difference was 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diae009/7696796 by guest on 11 July 2024

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diae009#supplementary-data


4  •  He et al.

Figure 1. Comparing the leaf-level ePhotosynthesis and FvCB models. The FvCB model has Vcmax of 110 and Jmax of 195 µmol m−2 s−1. An 
represents the leaf-level assimilation. (A) A–Ci curves at leaf temperature (Tleaf) of 25 °C and incoming light (Q) of 1500 µmol m−2 s−1. The 
ePhotosynthesis model was calibrated by fitting its A-Ci curve to match the same Vcmax and Jmax values used by the FvCB model. (B) A–Ci 
curves at Tleaf of 25 °C and Q of 400 µmol m−2 s−1. (C) A–Q curves with Tleaf of 25 °C and Ci of 400 ppm. (D) A–T curves with Q of 400 
µmol m−2 s−1 and Ci of 400 ppm.

Figure 2. Comparing the canopy-level An between BioCro-ePhotosynthesis and BioCro. (A) cumulative An during the 2006 growing season. 
(B–D) Hourly diurnal changes of An on the days 180 210, and 240.
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also mostly seen during the middle of a day when there was high 
radiation (Fig. 2D). This difference in the canopy An between the 
two models originated mostly from the difference in the leaf-level 
An (Fig. 1). Although a larger leaf area index was predicted by the 
coupled model, the difference was too small to have a significant 
impact on the canopy An [see Supporting Information—Fig. 
S2]. Similar to the increase in the canopy An, a slightly increased 
stomatal conductance was also predicted by the coupled model at 
the canopy level [see Supporting Information—Fig. S3].

3.2  Model application: a 2-fold increase in PGK and PRK 
concentrations results in a predicted 8.3 % increase in leaf-

level assimilation rates
Among the 26 enzyme reactions that were investigated 
in the sensitivity analysis, reactions V1 (Rubisco), V2 
(Phosphoglycerate kinase or PGK), V5 (FBP Aldolase), V9 
(Sedoheptulose-bisphosphatase), V10 (Transketolase) and V13 
(Phosphoribulokinase or PRK) were found to have the largest 
influence on An when PAR was set to 400 μmol m−2 s−1, Ci was 
set to 294 ppm and leaf temperature was set to 24 °C (Fig. 3). 
Increasing the six enzyme concentrations up to 2-fold, all at once 

and in different combinations, resulted in predicted increases 
in An up to 9.3 % [see Supporting Information—Fig. S4]. 
Among these enzymes, PGK and PRK were found to be essen-
tial targets to achieve an increase in An greater than 8% because 
they were the only two enzymes that needed to be increased by 
at least 1.6-fold in all cases [see Supporting Information—Fig. 
S5]. In comparison, there were simulations where any of the 
other four enzymes could remain at control levels and still result 
in an 8 % increase in An [[see Supporting Information—Fig. 
S5]. Increasing both PGK and PRK 2-fold in the model led to a 
predicted 8.3 % increase in An at the leaf level at Ci of ~300 ppm 
[see Supporting Information—Fig. S6A]. Little difference 
was found between the wildtype and doubled PGK-PRK under 
the high light condition with PAR of 1500 μmol m−2 s−1 [see 
Supporting Information—Fig. S6B].

3.3  Model application: a 2-fold increase in PGK and PRK 
concentrations results in a predicted 7 % increase in soybean 

yield
Using the coupled BioCro-ePhotosynthesis model, we simu-
lated the impacts of the 2-fold increase in the PGK and PRK 

Figure 3. LHS-PRCC of key enzyme reactions in the photorespiration and CBB cycle pathways. The driving environmental conditions were, 
PAR = 400 μmol m−2 s−1, Ci = 294 ppm and leaf temperature = 24 °C. The description of the enzyme reactions’ abbreviations can be found in 
Supporting Information—Table S6.
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enzyme concentrations on crop growth over four growing sea-
sons, 2002, 2004, 2005 and 2006. The cumulative canopy An 
at the season end of the 2006 growing season was predicted 
to be 12.9 t/ha for the wildtype and 13.6 t/ha when PGK and 
PRK were increased 2-fold (Fig. 4A). The increases in An were 
observed throughout the season and were the most significant 
during the middle of the day when the canopy experienced high 
light (Fig. 4B–D). There was also a notable increase in canopy 
stomatal conductance observed during midday, coinciding with 
elevated levels of PGK and PRK enzymes [see Supporting 
Information—Fig. S7].

Larger biomasses were further observed in all the soybean 
organs, including leaf, stem, seed and shell (Fig. 5). The wild-
type predicted seed yield was 5.4 t/ha. When PGK and PRK 
were increased 2-fold, the predicted yield increased to 5.8 t/ha, 
a 7 % yield increase. Similar yield increases were also observed 
in the other years ranging from a 6.2 % increase in 2004 to a 
7.3 % increase in 2002 (Fig. 6). On average, increasing the con-
centration of the PGK and PRK enzymes two-fold resulted in 
a 6.75% ± 0.5 % predicted increase in seed yield over the four 
growing seasons.

4  D I S C U S S I O N
4.1  The coupled BioCro-ePhotosynthesis model can 

efficiently simulate a detailed metabolic pathway at the field-
scale over full growing seasons

Crop photosynthesis and growth are complex processes. 
Simulating their interactions requires a fully coupled model 
to bridge processes at different scales. The coupled model 
framework presented here incorporates a detailed kinetic C3 

photosynthesis model (ePhotosynthesis) and a crop growth 
model (BioCro), which allows a seamless and efficient connec-
tion between the leaf-level metabolic activities that occur over 
seconds and the field-level crop growth and yield production 
that occurs over a full growing season. By translating the ePho-
tosynthesis model to C++, the coupled model is able to simu-
late a full growing season within an operationally useful time 
frame of about 6 h [see Supporting Information—Table S5]. 
Performance could be further sped up in the future by using par-
allelisation strategies to distribute the multilayer canopy photo-
synthesis calculations across multiple CPU cores.

We demonstrated one application of the model, where chang-
ing the concentration levels of two enzymes led to an increase 
in the final predicted yield. Previous studies often conducted 
experiments under high-light conditions. Our sensitivity analy-
sis was under a rather low light condition with limited adeno-
sine triphosphate (ATP) and nicotinamide adenine dinucleotide 
phosphate (NADPH) production. Therefore, the two enzymes, 
PGK and PRK (V2 & V13) became predominated since both 
enzymes are related to ATP consumption. Both PGK and 
PRK have been found to impact photosynthesis and growth in 
C3 crops (Paul et al. 1995; Rosa-Téllez et al. 2018). Although 
increasing PGK and PRK specifically has yet to be explored, pre-
vious studies have shown the potential of overexpressing them, 
possibly combined with other enzymes in the CBB cycle, to 
increase photosynthesis (Raines 2022; Yin et al. 2022). SBPase 
and Aldolase (V9 & V5) have received greater attention in pre-
vious research (Rosenthal et al. 2011; Simkin et al. 2015) in the 
context of another C3 crop, tobacco. The two enzymes were also 
found to be significant, mostly requiring an increase of at least 
1.3-fold [see Supporting Information—Fig. S5]. In contrast, 

Figure 4 Comparing canopy An for the 2006 growing season between the wildtype and increased PGK and PRK simulations. (A) Cumulative 
An throughout the growing season. (B–D) Hourly diurnal changes of An on the days 180 210, and 240.
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Rubisco (V1) and Transketolase (V10) exhibited more uniform 
distributions [see Supporting Information—Fig. S5].

4.2  The coupled model can be easily expanded to simulate 
other C3 and C4 crops

The coupled model can be applied to other crops without much 
effort needed for additional model development. Both ePhoto-
synthesis and BioCro were designed to be adjustable for generic 
crop types. In fact, ePhotosynthesis has been applied to several 
C3 crops including tobacco (Rosenthal et al. 2011), soybean 
(Shameer et al. 2022) and cassava (De Souza et al. 2020), and 
has also been expanded to model C4 crops including sorghum 

and maize (Wang et al. 2021). BioCro has also been used to sim-
ulate the growth of several C3 and C4 crops including soybean 
(Matthews et al. 2022), Miscanthus (Miguez et al. 2009; He et 
al. 2022) and sugarcane ( Jaiswal et al. 2017). Any of these crops 
could be simulated with some parameter changes using this cou-
pled BioCro-ePhotosynthesis framework.

4.3  The importance of evaluating the rate-limiting reactions 
at canopy level

We demonstrated the general sensitivity of leaf-level An to 
changes in 26 enzyme concentrations under a low-light environ-
mental condition (Fig. 3). The sensitivity results led us to double 
the concentrations of PGK and PRK, causing increases in leaf-
level An and further in canopy An and yield (Figs. 4–6). There is 
not a one-to-one relationship between the increase in leaf-level 
An (8.3 %) to the increase in the cumulative canopy An (5.75 
% ± 0.38 %) or the final yield (6.75 % ± 0.5 %), demonstrating 
the importance of using multiscale models to connect improve-
ments at the leaf-level to the field-scale crop outputs.

Although the leaf-level sensitivity is useful in identifying 
potential enzymes that may eventually transfer to improvements 
at the canopy level, it may not be the most optimal choice since 
the canopy has more heterogeneity in its microclimate and leaf 
properties. For example, light received by the bottom and top 
leaves differ (He and Matthews 2023), and considering only 
an average daytime light for the entire canopy in the sensitivity 
analysis may be an oversimplification. In addition, the incom-
ing radiation intercepted by the different parts of the canopy 
changes rapidly within a day, and the reactions that are limiting 
An may be different under these varying conditions. Further, 
water and nitrogen availability can also impact photosynthesis 
and yield at different stages of crop growth (Wu et al. 2023). The 

Figure 5. Comparing the wildtype and increased PGK and PRK predicted (A) leaf, (B) stem, (C) seed and (D) shell biomasses for the 2006 
growing season.

Figure 6. Model predicted wildtype and increased PGK and PRK 
soybean seed yields for the simulated 2002, 2004, 2005 and 2006 
growing seasons.
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soybean-BioCro model used in this study assumed abundant 
water and nitrogen conditions, which may be reasonable for 
the specific site but could overestimate yield gain in locations 
with less favourable conditions. Future work with the BioCro-
ePhotosynthesis model will include conducting a more com-
prehensive sensitivity analysis to identify the limiting enzymatic 
reactions at the canopy level, which may further improve the 
final yield.

4.4  Use the coupled model to incorporate non-steady-state 
photosynthesis at the field-scale

Simulating non-steady-state photosynthesis is another key 
application of the coupled model. Recent advances in non-
steady-state photosynthesis focus mainly on the photosyn-
thetic response to fluctuating light (Long et al. 2022), which 
is related to a protective mechanism in plants known as non- 
photochemical quenching (NPQ). Existing models have been 
developed to represent the dynamics of chlorophyll fluores-
cence excitation, electron transport and heat dissipation in the 
photosystem II supercomplex (Zaks et al. 2012; Zhu et al. 2013). 
However, similar to the standalone ePhotosynthesis they are not 
capable of directly evaluating the impact of NPQ on the canopy 
CO2 assimilation. The coupled BioCro-ePhotosynthesis model 
provides a more comprehensive model framework to integrate 
NPQ into a full crop photosynthesis and growth model.

While the coupled model is set up to be able to handle non-
steady-state dynamics, some challenges remain to using it to 
study the impacts of non-steady-state photosynthesis at the 
field-scale. One challenge is the need for high-frequency envi-
ronmental data, particularly light interception throughout the 
canopy. The high-frequency inputs would significantly increase 
the computation time, especially for an entire growing season. 
Efforts to improve the parallelisation of the canopy photo-
synthesis calculations to speed up computation time could 
address this challenge. Another related challenge is the need 
for a detailed radiation and canopy structural representation 
over a growing season that captures the high frequency light 
intensity interception by individual leaves. There have been 
several efforts in recent years to develop such models (Song et 
al. 2017; Acevedo‐Siaca et al. 2020; Wang et al. 2020; Zhen et 
al. 2022), but more work advancing field light measurements, 
ray-tracers and high-performance computing resources are 
needed before these models would be suitable for examining 
non-steady-state dynamics at the field-scale over a growing 
season.

4.5  Towards a flexible multidisciplinary model framework
The development of the coupled BioCro-ePhotosynthesis 
model has involved a range of expertise in biology from cell to 
whole plant levels, as well as in climate and computer science. 
The BioCro-ePhotosynthesis model framework can be used to 
investigate dynamics at the metabolite level and connect to crop 
growth at the canopy level. However, the users will still need to 
tailor the model to their own needs by conducting new param-
eterization, adding functions and extracting necessary model 
information. The coupled BioCro-ePhotosynthesis model could 
be further extended to include new plants, other metabolic pro-
cesses, regulatory pathways or additional ecosystem dynamics. 
A collective community effort is crucial to advance, develop and 

apply the model to answer the many open questions around 
engineering crops for the future.

SU P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online 
version of this article –

Figure S1. Model calibration and validation of the updated 
Soybean-BioCro that separates the pod biomass into the seed 
and shell biomasses. Four years of data were used: (A) 2002, (B) 
2004, (C) 2005 and (D) 2006. Points are the observed data at 
ambient CO2 (372 ppm) and lines are the model results. The car-
bon partitioning coefficients with added seed components were 
re-optimized using years 2002 and 2005 following the same 
method used in the original study (Matthews et al. 2022). The 
same four year data were then used to evaluate the model per-
formance. The validation of the original Soybean BioCro version 
with the pod component can be found in (Matthews et al. 2022).

Figure S2. (A) Comparing the leaf area index (LAI) between 
the BioCro-ePhotosynthesis and the standalone BioCro for the 
2006 growing season. (B) Comparing the hourly LAI between 
the BioCro ePhotosynthesis and the standalone BioCro on DOY 
240. (C) Comparing the hourly LAI during the daytime on DOY 
240 among three simulations: (1) BioCro-ePhotosynthesis; (2) 
the standalone BioCro; and (3) a BioCro simulation with the 
initial state of soybean (e.g. larger LAI) at the last hour of DOY 
239 by the BioCro-ePhotosynthesis (dashed red line). This test 
suggests that the slightly larger LAI only contributed to a small 
part of the total difference we observed in the canopy An on 
DOY 240 (see Fig. 2D).

Figure S3. Comparing the canopy-level stomatal conduct-
ance between BioCro-ePhotosynthesis and BioCro. (A) cumu-
lative canopy conductance during the 2006 growing season. 
(B–D) Hourly diurnal changes of canopy conductance on the 
days 180, 210, and 240.

Figure S4. Frequency distribution of the changes in An (%) 
due to the changes in six enzyme concentrations associated with 
reactions V1, V2, V5, V9, V10 and V13. Each enzyme was scaled 
up by factors of 1, 1.3, 1.6, and 1.9, resulting in a total combi-
nation of 4096. Enzyme descriptions can be found in Table S1. 
Red-circled bars represent the An changes that are larger than 
8%, totaling 408 combinations.

Figure S5. Frequency distributions of each scaling factor 
for the six enzymes that resulted in an increase in An by more 
than 8% (Fig. S4). Enzyme reaction descriptions can be found 
in Table S1.

Figure S6. Comparing A-Ci curves between the wildtype and 
doubled PRK and PRK under (A) a low light of 400 μmol m–2 s–1 
and (B) a high light of 1500 μmol m–2 s–1. The leaf temperature 
was set to be 25 °C.

Figure S7. Comparing the canopy-level stomatal conduct-
ance between the wildtype (black) and increased PGK and PRK 
(red) simulations. (A) cumulative canopy conductance during 
the 2006 growing season. (B–D) Hourly diurnal changes of can-
opy conductance on the days 180, 210, and 240.

Table S1. Scaling factors for the maximum enzyme reaction 
rates in the ePhotosynthesis model

Table S2. The Q10 values used in the ePhotosynthesis model 
to describe the temperature response of each enzyme.
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Table S3. Comparing the parameters that were re-optimized 
in the updated version of BioCro. The updated BioCro separated 
the Pod into Shell and Leaf.

Table S4. In addition to Table S1, descriptions of more 
enzymes used in the ePhotosynthesis model for the enzyme sen-
sitivity analysis.

Table S5. Estimated computational time needed for the three 
models: ePhotosynthesis Matlab, ePhotosynthesis C++, and the 
fully coupled BioCro-ePhotosynthesis. The canopy evaluation 
and whole-season evaluation are simple estimations from the 
single evaluation. The canopy evaluation assumes 3 iterations in 
the FvCB and Ball-Berry coupling and 10 layers each for sunlit 
and shaded leaves, thus 60 times longer than the single evalua-
tion. The whole season assumes 130 days. Actual computational 
time may vary with machine configurations.

Table S6. List of abbreviations for enzymes and their reac-
tions (Tables S1 and S4).
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