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A faster Rubisco with potential to increase
photosynthesis in crops
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In photosynthetic organisms, D-ribulose-1,5-bisphosphate carbox-
ylase/oxygenase (Rubisco) is the major enzyme assimilating atmo-
spheric CO2 into the biosphere1. Owing to the wasteful oxygenase
activity and slow turnover of Rubisco, the enzyme is among the most
important targets for improving the photosynthetic efficiency of vas-
cular plants2,3. It has been anticipated that introducing the CO2-
concentrating mechanism (CCM) from cyanobacteria into plants
could enhance crop yield4–6. However, the complex nature of Rubisco’s
assembly has made manipulation of the enzyme extremely challen-
ging, and attempts to replace it in plants with the enzymes from cya-
nobacteria and red algae have not been successful7,8. Here we report
two transplastomic tobacco lines with functional Rubisco from the
cyanobacterium Synechococcus elongatus PCC7942 (Se7942). We
knocked out the native tobacco gene encoding the large subunit of
Rubisco by inserting the large and small subunit genes of the Se7942
enzyme, in combination with either the corresponding Se7942 assem-
bly chaperone, RbcX, or an internal carboxysomal protein, CcmM35,
which incorporates three small subunit-like domains9,10. Se7942
Rubisco and CcmM35 formed macromolecular complexes within
the chloroplast stroma, mirroring an early step in the biogenesis of
cyanobacterial b-carboxysomes11,12. Both transformed lines were photo-
synthetically competent, supporting autotrophic growth, and their
respective forms of Rubisco had higher rates of CO2 fixation per unit
of enzyme than the tobacco control. These transplastomic tobacco
lines represent an important step towards improved photosynthesis
in plants and will be valuable hosts for future addition of the remain-
ing components of the cyanobacterial CCM, such as inorganic car-
bon transporters and the b-carboxysome shell proteins4–6.

Rubisco catalyses the incorporation of CO2 into biological compounds
in photosynthetic organisms1. During photorespiration, Rubisco also
reacts wastefully with oxygen, leading to the release of previously fixed
CO2, NH3 and energy13. Furthermore, catalysis by Rubisco is slow and
very large amounts (up to 50% of leaf soluble protein, 25% of leaf nitro-
gen) are needed to support adequate photosynthetic rates. Some variation
in the catalytic properties of Rubisco from diverse sources is apparent.
Harnessing this variation has the potential to confer superior photo-
synthetic characteristics to specific crops and environments14. C4 plants,
cyanobacteria and hornworts have evolved forms of CO2-concentrating
mechanisms (CCM) that allow them to utilize forms of Rubisco that
have higher catalytic rates and lower CO2 affinity, whereas C3 plants,
which lack a CCM, are constrained to express forms of Rubisco with
higher CO2 affinity but a relatively low rate of turnover2. In plants, Rubisco
is a L8S8 hexadecamer consisting of eight small subunits (SSU) and eight
large subunits (LSU). Although the SSU genes are located in the nucleus,
the LSU is encoded by the chloroplast genome, which has complicated
previous attempts to engineer improvements in higher plant Rubisco2,15.

Introduction of a CCM has been proposed as a means to improve the
performance of Rubisco in C3 plant chloroplasts4–6,16. In cyanobacteria
and several autotrophic prokaryotes, Rubisco and carbonic anhydrase
are enclosed within polyhedral microcompartments known as carboxy-
somes, which maintain elevated CO2 concentrations in the vicinity of

Rubisco, which both increases carbon fixation and suppresses photo-
respiration4,6. However, when a tobacco transplastomic line was created
in which the LSU gene, rbcL, from the cyanobacterium Synechococcus
PCC6301 replaced the native tobacco rbcL, the cyanobacterial LSU did
not form a functional complex with the native tobacco SSU8. Although
a simpler L2 homodimer Rubisco from Rhodospirillum rubrum was
able to assemble inside tobacco chloroplasts17, red algal Rubisco sub-
units failed to produce functional L8S8 complexes within chloroplasts7.

To test whether cyanobacterial LSU and SSU can assemble into a func-
tional enzyme within higher plant chloroplasts, we generated two trans-
plastomic tobacco lines, named SeLSX and SeLSM35, using the biolistic
delivery system18, to express the two Rubisco subunits from Se7942 along
with either RbcX or CcmM35, respectively. In each chloroplast transfor-
mant, three genes were co-transcribed from the tobacco rbcL promoter.
Eachdownstreamgene wasprecededbyanintercistronicexpressionelement
(IEE) and a Shine-Dalgarno sequence (SD) and equipped with a termina-
tor to facilitate processing into translatable monocistronic transcripts19,20

(Fig. 1a).
The two vectors we constructed were designed to replace the tobacco

rbcL gene with the foreign DNA. To determine whether all chloroplasts
in each plant contained the transgenic locus rather than endogenous
tobacco rbcL, we examined blots of total leaf DNA digested with restric-
tion enzymes that would produce restriction fragment-length polymor-
phisms between the wild-type and transgenic loci (Fig. 1b). We found
that shoots arising after two rounds on selective medium were homo-
plasmic for the transgene locus, lacking the fragment corresponding to
the wild-type chloroplast genome (Fig. 1b). In order to verify these obser-
vations, we performed reverse transcription and PCR (RT–PCR) and
observed no cDNA derived from the native rbcL transcript, whereas
cDNAs produced from aadA, the selectable marker gene, and the cyano-
bacterial genes were detected (Fig. 1c).

To observe the expression of the cyanobacterial proteins, we extracted
total leaf proteins and examined them by SDS–PAGE and immunoblots.
In Coomassie-stained gels, we detected protein bands at the predicted
molecular masses of ,52 kDa for the LSU and ,13 kDa for the SSU of
the cyanobacterial Rubisco in SeLSX and SeLSM35 samples, whereas
wild-type tobacco exhibited a protein of the expected and distinct SSU
mass of ,15 kDa (Fig. 2a). Immunoblots probed with antibodies specific
for either the cyanobacterial LSU, tobacco Rubisco, tobacco SSU or cyano-
bacterial CcmM35 verified the presence of cyanobacterial proteins in the
two transformants and tobacco Rubisco only in the wild-type plant
(Fig. 2a). Although no engineering of tobacco SSU genes was performed
in the transgenic lines, tobacco SSU protein was undetectable, as expected,
as its stability is known to be severely affected in the absence of a com-
patible LSU8,17. The absence of the tobacco SSU in the transformants
also indicated that it could not form a stable complex with the cyano-
bacterial LSU. The estimated stoichiometry of CcmM35 per Rubisco
holoenzyme in SeLSM35 transformant is about 4.5, which is consistent
with the values reported for cyanobacteria (Extended Data Fig. 1)21.

In order to observe the configuration of the cyanobacterial Rubisco in
the two transgenic lines, we examined the plant material by transmission
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electron microscopy (TEM) in combination with immunogold label-
ling. Although the enzyme was localized to the chloroplast stroma in
both transgenic lines, we observed markedly different patterns of molec-
ular organization. In leaves of the SeLSX line, the cyanobacterial Rubisco
showed a diffuse localization similar to endogenous Rubisco in wild-type
tobacco (Fig. 2b, c). In contrast, in the SeLSM35 line, in which the Rubisco
is co-expressed with CcmM35, the proteins were aggregated into a giant
complex in each chloroplast (Fig. 2d and Extended Data Fig. 2). In
Se7942, CcmM35 is translated from an internal ribosome entry site of
the ccmM transcript, which also produces the full-length protein, CcmM58,
with an additional amino-terminal domain22. Previous estimation of
protein ratios suggested that Rubisco in Se PCC7942 probably exists as
L8S5 units crosslinked by the SSU-like domains of CcmM35 resulting
in their paracrystalline arrangement in the lumen ofb-carboxysomes21.
The cyanobacterial mutant lacking CcmM58 produces large electron-
dense bodies of 300–500 nm with a rectangular cross-section composed
of Rubisco and CcmM35 (ref. 22). However, the structures formed inside
chloroplasts are generally rounded in appearance without apparent in-
ternal order. This discrepancy probably arises from different ratios of
Rubisco and CcmM35 or additional carboxysomal components poten-
tially present in the cyanobacterial bodies. Remarkably, the structures

observed in chloroplasts are highly similar in appearance to procar-
boxysomes recently identified as an important early stage in the car-
boxysome assembly11 and will potentially facilitate future attempts to
assemble b-carboxysomes in chloroplasts through expression of other
essential components.

The specificity of the carboxylase activity of cyanobacterial Rubisco
relative to its competing oxygenase activity (specificity factor) is known
to be lower than that in higher plants, making it more sensitive to the
inhibitory effects of oxygen than tobacco Rubisco2. SeLSX and SeLSM35
plants did not survive on soil at the normal atmospheric CO2 concentra-
tion of ,400 p.p.m., but were able to grow in CO2-enriched (9,000 p.p.m.)
air at a rate slower than the wild-type plant. Both transgenic plants have
normal appearance (Fig. 3). Previous efforts to engineer tobacco Rubisco
demonstrated that the growth rate and photosynthetic properties of
transplastomic plants are generally consistent with the expression levels
and catalytic properties of the recombinant Rubisco2,17. We believe it is
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Figure 1 | Replacement of the tobacco chloroplast rbcL with cyanobacterial
genes. a, Gene arrangements of the rbcL locus in the wild-type, SeLSX and
SeLSM35 tobacco lines. Endogenous chloroplast DNA elements are shown in
grey and the newly introduced segments in black. The intergenic regions
IG1, IG2, IG3 and IG4 include TpetD(At)-IEE-SD, TpsbA(At)-IEE-SD,
Trps16(At)-IEE-SD and TpsbA(At)-IEE-SD18 respectively, where TpetD,
TpsbA and Trps16 are the terminator sequences following the corresponding
genes and At stands for the chloroplast of Arabidopsis thaliana as the source of
these sequences. The selectable marker operon (SMO) includes LoxP-PpsbA-
aadA-Trps16-LoxP, where PpsbA stands for the promoter of the psbA gene.
The probe recognizes the rbcL promoter (PrbcL) region. The NheI and NdeI
sites used in the DNA blot along with the lengths of the expected DNA
fragments detected by the probe are indicated. DIG, digoxygenin. b, DNA blot
analysis of wild-type, SeLSX and SeLSM35 lines digested with NdeI and NheI.
c, Analyses of RT–PCR products of 6 genes. Nt-rbcL is the only tobacco
(Nt, Nicotiana tabacum) gene; all other genes are the transgenes introduced
into the tobacco chloroplast genome. X 5 rbcX, M 5 ccmM35.
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Figure 2 | Cyanobacterial proteins in tobacco chloroplasts. a, Coomassie-
stained gel and immunoblot of 14mg of total leaf protein from wild-type (WT),
SeLSX and SeLSM35 tobacco lines. Immunoblots were probed with the
antibodies indicated. Molecular mass( kDa) of standard proteins are shown.
Asterisk symbol indicates molecular mass of tobacco SSU; dagger symbol
indicates molecular mass of cyanobacterial SSU. c, cyanobacteria; t, tobacco.
b–d, Electron micrographs of leaf sections showing the localization of Rubisco
in the stroma of mesophyll chloroplasts of wild-type (b), SeLSX (c) and
SeLSM35 (d) tobacco lines. Leaf tissues were prepared by high pressure freeze
fixation (HPF) in combination with immunogold labelling using an anti-
tobacco Rubisco antibody (b) or an anti-cyanobacterial Rubisco antibody
(c, d) and a secondary antibody conjugated with 10 nm gold particles, which are
indicated with either black circles or arrows. Scale bars, 500 nm (top panels in
b, d) and 200 nm (c and the bottom panels in b, d).
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also the case in our transplastomic plants. Our preliminary analyses to
quantify the Rubisco content using the CABP (2-carboxy-D-arabinitol-
1,5-bisphosphate) binding method indicate that the Rubisco concentra-
tions in the two chloroplast transformants are approximately 12–18%
of that in the wild-type plant (Extended Data Table 1)23. In addition, the
lower levels of total soluble proteins and chlorophyll concentrations
probably contribute to the observed slow growth of the two chloroplast
transformants (Extended Data Table 1).

The fact that both transgenic lines could grow autotrophically indi-
cated that active cyanobacterial Rubisco has assembled. We measured
the carboxylase activities of the cyanobacterial Rubisco in the leaf homo-
genates at room temperature using ribulose bisphosphate (RuBP) and
several concentrations of radiolabelled sodium bicarbonate (NaH14CO3).
The assays were performed in the presence of 10 mM, 20 mM and
50 mM NaH14CO3, which at pH 8.0 would generate dissolved CO2 con-
centrations of approximately 125mM, 250mM and 640mM, respec-
tively. The carboxylase activity of Rubisco in the tobacco control did
not increase upon increasing the CO2 concentration, confirming that
the native enzyme was already saturated at 125mM of dissolved CO2

(Fig. 4). In contrast, cyanobacterial Rubisco displayed greater carbox-
ylase activity at higher CO2 concentrations, with a rate of catalysis which
exceeded that of the tobacco enzyme at each CO2 concentration. Our
measured kinetic values are consistent with the reported rate and Michaelis
constants for CO2 (,3 s21 and 10.7mM for tobacco and ,12 s21 and
200mM for the enzyme in Synechococcus PCC6301, respectively)2,24.
We confirmed that the carboxylase activities detected in our samples
were specific to Rubisco, as they were entirely dependent on the pres-
ence of RuBP and were inhibited by CABP25 (Extended Data Fig. 3).
The high carboxylase activities detected in the transformants are con-
sistent with the absence of interference by tobacco SSU in the assembly
of bona fide cyanobacterial Rubisco in the chloroplasts. Furthermore,
both transgenic lines exhibited high Rubisco activities despite differ-
ences in its intra-organellar organization.

We included RbcX in one of our chloroplast transformation vectors
because it has been shown to enhance the assembly of the LSU core com-
plex before formation of the final hexadecameric complex9. However,
Se7942 lacking RbcX suffered no defect in growth rate or Rubisco activity26.
As line SeLSM35 lacks RbcX but has active Rubisco, evidently Se-RbcX
is not essential for the assembly of functional cyanobacterial Rubisco in
chloroplasts. CcmM35, through its SSU-like domains, might assist in the
assembly of cyanobacterial Rubisco in SeLSM35 in the absence of RbcX.

The transgenic plants described here are absolutely dependent on the
cyanobacterial Rubisco for carbon fixation. If the oxygenation reaction
of cyanobacterial Rubisco can be suppressed and the local CO2 concen-
tration in the vicinity of the enzyme can be raised by further engineer-
ing, CO2 assimilation may be enhanced, and the necessity to divert so
much fixed nitrogen into this enzyme may be diminished. Recently, we
demonstrated that the shell proteins ofb-carboxysomes could form struc-
tures similar to empty microcompartments in the chloroplast stroma27.
Introduction of the carboxysome shell proteins, the required internal
proteins, and appropriate transporters into transgenic plants containing
cyanobacterial Rubisco is predicted to result in significantly enhanced
photosynthetic performance in vascular plants5,6. This report, demon-
strating that cyanobacterial Rubisco can assemble into active enzyme
in a C3 plant and support autotrophic photosynthesis, is an important
step towards the introduction of a complete and functional CCM into
the chloroplasts of vascular plants.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 4 | Carboxylase activities at different 14CO2 concentrations.
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The rates of carboxylase activity (mol CO2 fixed per mol active sites per s) at
each point of the curves are the means 6 standard deviation of the 2, 4 and
6 min data obtained in two independent assays at different CO2 concentrations
(125mM, 250mM, 640mM).

LETTER RESEARCH

2 5 S E P T E M B E R 2 0 1 4 | V O L 5 1 3 | N A T U R E | 5 4 9

Macmillan Publishers Limited. All rights reserved©2014

www.nature.com/doifinder/10.1038/nature13776


6. Price, G. D. et al. The cyanobacterial CCM as a source of genes for improving
photosynthetic CO2 fixation in crop species. J. Exp. Bot. 64, 753–768 (2013).

7. Whitney,S.M.,Baldet, P.,Hudson,G.S., Andrews, T. J.&Form, I. Rubiscos fromnon-
green algae are expressed abundantly but not assembled in tobacco chloroplasts.
Plant J. 26, 535–547 (2001).

8. Kanevski, I., Maliga, P., Rhoades, D. F. & Gutteridge, S. Plastome engineering of
ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower
large subunit and tobacco small subunit hybrid. Plant Physiol. 119, 133–142
(1999).

9. Saschenbrecker, S. et al. Structure and function of RbcX, an assembly chaperone
for hexadecameric rubisco. Cell 129, 1189–1200 (2007).

10. Long, B. M., Badger, M. R., Whitney, S. M. & Price, G. D. Analysis of carboxysomes
from Synechococcus PCC7942 reveals multiple Rubisco complexes with
carboxysomalproteinsCcmMandCcaA. J.Biol. Chem.282,29323–29335(2007).

11. Cameron, J. C., Wilson, S.C., Bernstein, S. L. & Kerfeld, C. A.Biogenesis of a bacterial
organelle: the carboxysome assembly pathway. Cell 155, 1131–1140 (2013).

12. Chen, A. H., Robinson-Mosher, A., Savage, D. F., Silver, P. A. & Polka, J. K. The
bacterial carbon-fixing organelle is formed by shell envelopment of preassembled
cargo. PLoS ONE 8, e76127 (2013).

13. Parry, M. A. J., Andralojc, P. J., Mitchell, R. A. C., Madgwick, P. J. & Keys, A. J.
Manipulation of Rubisco: the amount, activity, function and regulation. J. Exp. Bot.
54, 1321–1333 (2003).

14. Zhu, X. G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater
yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

15. Dhingra, A., Portis, A. R. & Daniell, H. Enhanced translation of a chloroplast-
expressed RbcS gene restores small subunit levels and photosynthesis in nuclear
RbcS antisense plants. Proc. Natl Acad. Sci. USA 101, 6315–6320 (2004).

16. von Caemmerer, S., Quick, W. P. & Furbank, R. T. The development of C4 rice:
current progress and future challenges. Science 336, 1671–1672 (2012).

17. Whitney, S. M. & Andrews, T. J. Plastome-encoded bacterial ribulose-1,5-
bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and
growth in tobacco. Proc. Natl Acad. Sci. USA 98, 14738–14743 (2001).

18. Maliga, P. & Tungsuchat-Huang, T. Plastid transformation in Nicotiana tabacum
and Nicotiana sylvestris by biolistic DNA delivery to leaves. Methods Mol. Biol. 1132,
147–163 (2014).

19. Zhou, F., Karcher, D. & Bock, R. Identification of a plastid intercistronic expression
element (IEE) facilitating the expression of stable translatable monocistronic
mRNAs from operons. Plant J. 52, 961–972 (2007).

20. Drechsel, O. & Bock, R. Selection of Shine–Dalgarno sequences in plastids. Nucleic
Acids Res. 39, 1427–1438 (2011).

21. Long, B. M., Rae, B. D., Badger, M. R. & Price, G. D. Over-expression of the beta-
carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight

co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content.
Photosynth. Res. 109, 33–45 (2011).

22. Long, B. M., Tucker, L., Badger, M. R. & Price, G. D. Functional cyanobacterial
b-carboxysomes have an absolute requirement for both long and short forms of
the CcmM protein. Plant Physiol. 153, 285–293 (2010).

23. Yokota, A. & Canvin, D. T. Ribulose bisphosphate carboxylase/oxygenase content
determined with [14C]carboxypentitol bisphosphate in plants and algae. Plant
Physiol. 77, 735–739 (1985).

24. Mueller-Cajar, O. & Whitney, S. M. Evolving improved Synechococcus
Rubisco functional expression in Escherichia coli. Biochem. J. 414, 205–214
(2008).

25. Parry, M. A. J., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E. & Andralojc, P. J.
Rubisco regulation: a role for inhibitors. J. Exp. Bot. 59, 1569–1580 (2008).

26. Emlyn-Jones, D., Woodger, F. J., Price, G. D. & Whitney, S. M. RbcX can function as a
Rubisco chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell
Physiol. 47, 1630–1640 (2006).

27. Lin, M. T. et al. b-carboxysomal proteins assemble into highly organized structures
in Nicotiana chloroplasts. Plant J. 79, 1–12 (2014).

Acknowledgements We thank C. Kerfeld (Michigan State University) for helpful
discussion and providing us with the Se7942 genomic DNA and purified His-tagged
CcmM protein, W. Li (Cornell University) for technical assistance in generating,
selecting and analysing the tobacco chloroplast transformants and M. Waqar Hameed
(Cornell University) for the codon-optimized cyanobacterial Rubisco genes. This
material is based upon work supported by the National Science Foundation under
grant number EF-1105584 to M.R.H., Biotechnology and Biological Sciences Research
Council under grant number BB/I024488/1 to M.A.J.P. and the National Institute of
General Medical Sciences of the National Institutes of Health under award number
F32GM103019 to M.T.L. P.J.A. and M.A.J.P. also acknowledge support from the 20:20
Wheat Institute Strategic Program (BBSRC BB/J/00426X/1).

Author Contributions M.T.L. designed and generated the DNA constructs and the
transgenic tobacco lines. A.O. carried out the TEM imaging, protein analyses and
Rubisco activity assays. M.R.H., P.J.A. and M.A.J.P. supervised the project. All authors
interpreted results and wrote the manuscript.

Author Information The nucleotide sequences are deposited in GenBank with
accession numbers KM102745 and KM102746 for SeLSX and SeLSM35 tobacco
lines, respectively. Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of the paper. Correspondence
and requests for materials should be addressed to M.R.H. (mrh5@cornell.edu).

RESEARCH LETTER

5 5 0 | N A T U R E | V O L 5 1 3 | 2 5 S E P T E M B E R 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

http://www.ncbi.nlm.nih.gov/nuccore/?term=KM102745
http://www.ncbi.nlm.nih.gov/nuccore/?term=KM102746
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature13776
mailto:mrh5@cornell.edu


METHODS
Construction of the transformation vectors. The Se-rbcL and Se-rbcS genes with
codons optimized for chloroplast translation system were designed by Muhammad
Waqar Hameed and synthesized by Bioneer. Extended Data Table 2 contains the
primers ordered from Integrated DNA Technologies and used in this work. The
amplifications of DNA molecules were carried out with Phusion High-Fidelity
DNA polymerase (Thermo Scientific). The restriction enzymes and T4 DNA ligase
were also purchased from Thermo Scientific.

The two tobacco chloroplast genomic loci (F1 and F2) immediately flanking the
rbcL gene (base pairs 56620–57599 and 59034–60033 of NCBI Reference Sequence:
NC_001879.2) were amplified from the DNA extracted from tobacco plants using
the primer pairs F1for-F1rev and F2for-F2rev respectively and cloned into pCR8/
GW/TOPO TA vector (Life Technologies) adding PstI and MluI restriction sites at
the 59 and 39 end of F2, respectively. The Se-rbcL gene was amplified from pGEM-
Teasy-Se-rbcL with F1OLrbcLfor and 4RErbcLrev primers adding an overlap to the
39 end of F1 at the 59 end of Se-rbcL and four restriction sites, MauBI, NotI, PstI and
MluI, at the 39 end of Se-rbcL. This amplified Se-rbcL gene was designed to replace
the tobacco rbcL in frame and allow the synthetic expansion of the operon. F1for2
and F1rev primers were used to amplify F1 from its pCR8 vector and the resulting
product was then joined with the Se-rbcL amplicon by the overlap extension PCR
procedure. The F1-Se-rbcL segment was then digested with ApaI and MluI restric-
tion enzymes and ligated into pGEM-Teasy-Se-rbcL template treated with the same
two enzymes to obtain the pGEM-F1-rbcL vector. F2 was digested out of its pCR8
vector with PstI and MluI enzymes and ligated into the similarly disgested pGEM-
F1-rbcL to yield the pGEM-F1-rbcL-F2 vector. The selectable marker operon
(SMO) containing LoxP-PpsbA-aadA-Trps16-LoxP was amplified from a prev-
iously reported chloroplast transformation vector, pTetCBglC28, with SMOfor and
SMOrev primers, digested with PstI and ligated in forward orientation to the PstI-
digested pGEM-F1-rbcL-F2 vector to obtain the pGEM-F1-rbcL-SMO-F2 vector.
The rbcL terminator (TrbcL) was amplified from the tobacco DNA with TrbcLfor
and TrbcLrev primers, digested with MauBI and Bsp120I enzymes and ligated
between the MauBI and NotI sites of the pGEM-F1-rbcL-SMO-F2 vector to obtain
the pCT-rbcL vector, which is ready to replace the tobacco rbcL with Se-rbcL and
the SMO by the chloroplast transformation procedure. The Se-rbcL operon driven
by the native rbcL promoter in pCT-rbcL was then expanded at the MauBI site with
Se-rbcS, Se-rbcX and Se-ccmM35 as follows.

Three terminators from the Arabidopsis thaliana (At) chloroplast genome,
TpetD(At), TpsbA(At) and Trps16(At), were amplified with their respective pri-
mer pairs, TpetDAtfor-TpetDAtrev, TpsbAAtfor-TpsbAAtrev and Trps16Atfor-
Trps16Atrev, adding an overlap to the intercistronic expression element (IEE) at
the 39 end and two restriction sites, MluI and MauBI at the 59 end of each termi-
nator. Each terminator was extended at the 39 end by IEE-s.d. or IEE-SD18 frag-
ment with primers IEESDrev or IEESD18rev-SD18rev2 respectively, resulting in
the four intergenic regions, IG1, IG2, IG3, and IG4 in Fig. 1a. The Se-rbcX and Se-
ccmM35 genes were amplified from the genomic DNA extracted from Se7942
using the primer pairs rbcXfor-rbcXrev and M35for-M35rev respectively, adding
an overlap to the IEE-s.d. fragment at the 59 end and an MluI site at the 39 end of
each gene. Similarly, Se-rbcS was amplified from pGEM-Teasy-Se-rbcL using the
primer pair rbcSfor-rbcSrev. Then, IG1-rbcS, IG2-rbcX, IG3-rbcS and IG4-ccmM35
fragments were similarly generated by joining each intergenic fragment with the
corresponding gene using the overlap extension PCR procedure. The MluI-digested
IG2-rbcX and IG4-ccmM35 modules were each inserted into the MauBI site of the
pCT-rbcL to obtain pCT-rbcL-rbcX and pCT-rbcL-ccmM35, respectively. Then the
MluI-digested IG1-rbcS and IG3-rbcS modules were each inserted into the MauBI
site of pCT-rbcL-rbcX and pCT-rbcL-ccmM35 to obtain pCT-LSX and pCT-LSM
vectors, respectively, which were used in the following chloroplast transformation
procedure to replace the native rbcL gene with the cyanobacterial genes.
Generation of transplastomic tobacco plants. We used the Biolistic PDS-1000/
He Particle Delivery System (Bio-Rad Laboratories) and a tissue-culture based
selection method18. Two-week-old tobacco (Nicotiana tabacum cv. Samsun) seed-
lings germinated in sterile MS agar medium were bombarded with 0.6mm gold
particles carrying the appropriate chloroplast transformation vector. Two days
later, the leaves were cut in half and put on RMOP agar plates containing 500 mg l21

of spectinomycin and incubated for 4–6 weeks at 23uC with 14 h of light per day.
The shoots arising from this medium were cut into small pieces of about 5 mm2

and subjected to the second round of regeneration in the same RMOP me-
dium for about 4–6 weeks. The shoots from the second selection round were then
transferred to MS agar medium containing 500 mg l21 of spectinomycin for root-
ing and then to soil for growth in a greenhouse chamber with elevated atmospheric
CO2.
DNA blot analyses of the rbcL locus of the chloroplast genome. We synthesized
the digoxigenin(DIG)-sUTP-labelled DNA probe (56907–57411 of NCBI Refer-
ence Sequence: NC_001879.2) with PCR DIG Probe Synthesis Kit by Roche and

SBprbfor-SBprbrev primer pair. The total DNA from leaf tissues were extracted
with a standard CTAB-based procedure. The leaf tissues frozen in liquid nitrogen
were finely ground in Eppendort tubes in 600ml of 23 CTAB buffer (2% hexade-
cyltrimethyl ammonium bromide, 1.4 M sodium chloride, 20 mM EDTA, 100 mM
Tris pH 8.0, 0.2% beta-mercaptoethanol) and incubated at 65uC for 1 h. The DNA
was extracted with 600ml of chloroform containing 4% isopropanol. The DNA
present in the upper layer transferred to a clean tube was precipitated with 0.8
volume of isopropanol at 270uC for 1 h and pelleted with a microcentrifuge. The
DNA pellet was washed with 200ml of 70% ethanol and air-dried before it was
dissolved in 100ml of double-distilled water. After quality and concentration of the
DNA samples were determined by a NanoDrop method, 1mg of each DNA sample
was digested by NdeI and NheI restriction enzymes, and the digested fragments
were separated on a 1% agarose gel. The DNA pieces in the gel were depurinated,
denatured and then transferred and cross-linked to a nylon membrane according
to the manufacturer’s protocols. The DNA samples on the membrane blot were
hybridized with the DIG-labelled probe, which was then detected with anti-digox-
igenin alkaline phosphatase antibody using CDP-star chemiluminescent substrate
(Roche) according to the manufacturer’s specifications.
Analyses of the transcripts by RT–PCR. Total RNA was extracted from each leaf
tissue sample with a standard TRIzol procedure. The leaf tissues frozen with liquid
nitrogen were ground in 800ml of trizol and incubated at 22uC for 5 min. After the
insoluble pieces were removed by centrifugation, 160ml of chloroform was added
to the supernatant, mixed vigorously for 15 s and incubated at 22uC for 3 min. The
two aqueous phases were separated in a centrifuged at 4uC for 15 min and the upper
layer transferred to a new tube was mixed with 500ml of isopropanol. The sample
was incubated at 22uC for 10 min and centrifuged at 4uC for 10 min. The pellet was
resuspended in 800ml of 75% ethanol and centrifuged again at 4uC for 10 min. The
pellet was air-dried and resuspended in 50ml of molecular biology grade water.
The RNA samples were treated with DNase using Ambion DNA-free kit (Life
Technologies) and the cDNA for each gene was generated with its corresponding
reverse primer using Sensiscript Reverse Transcription kit (Qiagen) according to
the manufacturer’s protocols. The cDNA samples were amplified with the PCR
master mix (Bioline) and analysed in a 1% agarose gel.
SDS page, immunoblot and determination of CcmM35/Rubisco content. The
crude leaf homogenates used in the carboxylase activity measurements were sepa-
rated by SDS–PAGE using 4–20% polyacrylamide gradient gels (Thermo Scientific,
UK). For each sample, the same amount of protein, as determined by Bradford
assay, was loaded onto the gel. After electrophoresis, the resolved proteins were
transferred to a nitrocellulose membrane (Hybond-C Extra from GE Healthcare
Life Sciences) using a western blot apparatus. The nitrocellulose membranes were
immunoblotted using one of four primary polyclonal antibodies raised against:
cyanobacterial (Se PCC6301) Rubisco; tobacco Rubisco; the small subunit of tobacco
Rubisco; and CcmM from Se PCC7942. The primary polyclonal antibody to detect
CcmM35 was generated in rabbit with His-tagged CcmM58 protein purified from
E. coli (Cambridge Research Biochemicals, UK) and used at a dilution of 1:500 in
the immunoblots and from 1:500 to 1:2,000 for immunogold labelling, and was
highly specific for CcmM (Fig. 2a). The primary antibodies were visualized by
means of a secondary goat anti-rabbit peroxidase-conjugated antibody (Sigma).

The absolute and relative content of Synechococcus Rubisco and CcmM35 in
SeLSM35 leaves were determined using immunoblots with antibodies against
CcmM and cyanobacterial Rubisco. The amounts of Rubisco and CcmM35 pre-
sent in crude leaf homogenates were estimated by comparison with authentic
protein standards (purified CcmM35 and cyanobacterial Rubisco). Amounts of
CcmM35 and cyanobacterial Rubisco (mmol m22) were the mean 6 standard devi-
ation for duplicate determinations. The band intensities were obtained using ImageJ
software (NIH, USA) and the standard curves using Microsoft Excel.
Purification of cyanobacterial Rubisco and CcmM35 proteins. Synechococcus
Rubisco was expressed in E. coli BL21 (DE3) cells using the vector pAn92 as pre-
viously described29. This material was harvested by centrifugation and resuspended
in buffer containing 0.1 M Bicine-NaOH pH 8.0, 20 mM MgCl2, 50 mM NaHCO3,
100 mM PMSF and bacterial protease inhibitor cocktail (Sigma). All steps in the
purification were conducted at 0uC. The harvested cells were sonicated and cell
debris removed by centrifugation (17,400g, 20 min, 4uC). PEG-4000 and MgCl2
were added to the supernatant, giving final concentrations of 20% (w/v) and 20 mM,
respectively. After 30 min at 0uC, the precipitated Rubisco was sedimented by cent-
rifugation (17,400g, 20 min, 4uC) and the pellet resuspended in 25 mM triethano-
lamine (pH 7.8, HCl), 5 mM MgCl2, 0.5 mM EDTA, 1 mM e-aminocaproic acid,
1 mM benzamidine, 12.5% (v/v) glycerol, 2 mM DTT and 5 mM NaHCO3. This
material was subjected to anion-exchange chromatography using a 5 ml HiTrap Q
column (GE-Healthcare) pre-equilibrated with the same buffer. Rubisco was eluted
with a 0–600 mM NaCl gradient in the same buffer. Fractions containing the most
Rubisco activity (as judged by RuBP-dependent 14CO2 assimilation) were further
purified and desalted by size-exclusion chromatography using a 20 3 2.6 cm diameter
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column of Sephacryl S-200 HR (GE-Healthcare) pre-equilibrated and developed
with (50 mM Bicine-NaOH pH 8, 20 mM MgCl2, 0.2 mM EDTA, 2 mM DTT).
The resulting protein peak was concentrated by ultrafiltration using 20 ml capacity
/150 kDa cut-off centrifugal concentrators (Thermo Pierce). The PCR-amplified
ccmM35 gene from Se PCC7942 was cloned into pCR8/GW/TOPO TA vector (Life
Technologies) and subsequently transferred to the Gateway pDEST17 E. coli ex-
pression vector (Life Technologies), which utilizes the T7 promoter to express the
inserted gene and incorporates a 63His tag at the N terminus of the translated
protein. The expression vector was transformed into Rosetta (DE3) competent cells,
and the protein expression was induced with 0.5 mM IPTG at OD600nm of 0.5. The
cells in 0.5 litre LB culture were harvested after 4 h of growth at 37uC and 250 r.p.m.
The cells were resuspended in about 10 ml of ice cold 50 mM sodium phosphate,
300 mM sodium chloride, 20 mM imidazole at pH 8.0 and broken with sonication.
The cell debris were removed by centrifugation and the supernatant was mixed
with 2 ml of Ni-NTA resin, which was then washed with 15 ml of the cell suspen-
sion buffer in a gravity-flow column and the bound protein was eluted with the
buffer containing 200 mM imidazole. The purity of CcmM35 was assessed with
SDS–PAGE, and its concentration was determined by the Bradford method.
Cryo-preparation of leaf material and transmission electron microscopy. Leaf
material was cryofixed at a rate of 20,000 Kelvins per sec using a high pressure
freezer unit (Leica Microsystems EM HPM100). The second step of freeze substi-
tution of cryofixed samples was performed in an EM AFS unit (Leica Microsystems)
at 285uC for 48 h in 0.5% uranyl acetate in dry acetone. The samples were then
infiltrated at low temperature in Lowicryl HM20 resin (Polysciences) and polymer-
ized with a UV lamp27.

For the immunogold labelling, gold grids carrying ultrathin sections (60–90 nm)
of leaf tissue embedded in HM20 were treated using different rabbit primary anti-
bodies against: cyanobacterial Rubisco from Se PCC6301; tobacco Rubisco; and
CcmM35 (produced by Cambridge Research Biochemicals). A secondary goat
polyclonal antibody to rabbit IgG conjugated with 10 nm gold particles (Abcam,
UK) was used for the labelling.

Images were obtained using a transmission electron microscope (Jeol 2011 F)
operating at 200 kV, equipped with a Gatan Ultrascan CCD camera and a Gatan
Dual Vision CCD camera.
Plant material and growing conditions. Both transgenic and wild-type Nicotiana
tabacum var. Samsun NN were grown in the same controlled environment chamber

with 16 h of fluorescent light (43%) and 8 h dark, at 24uC during the day and 22uC
during the night. The relative humidity was 70% during the day and 80% during the
night. The atmospheric CO2 concentration was kept constant at 9,000 p.p.m. (air
containing 0.9% v/v CO2).
Quantification of protein, Rubisco, and chlorophyll. Total soluble protein in
the leaf homogenates was determined by the standard Bradford method. Rubisco
active site concentration in the crude homogenate was determined using the [14C]-
CABP binding assay23 or by quantifying LSU band intensity by immunoblotting.
Each approach gave very similar results. Chlorophyll concentration was deter-
mined spectrophotometrically using unfractionated leaf homogenates30.
Carboxylase activity measurements. Leaf discs (1 cm2) were cut and promptly
homogenized using an ice-cold pestle and mortar, in the presence of 500ml of ice-
cold extraction buffer (50 mM EPPS-NaOH pH 8.0; 10 mM MgCl2; 1 mM EDTA;
1 mM EGTA; 50 mM 2-mercaptoethanol; 20 mM DTT; 20 mM NaHCO3; 2 mM
Na2HPO4; Sigma plant protease inhibitor cocktail (diluted 1:100); 1 mM PMSF;
2 mM benzamidine; 5 mM e-aminocaproic acid). Rubisco carboxylase activity was
measured immediately in 500ml of assay buffer containing 100 mM EPPS-NaOH
pH 8.0, 20 mM MgCl2, 0.8 mM RuBP and 10 mM, 20 mM or 50 mM NaH14CO3

(18.5 kBq per mol) at room temperature (22uC). The assay was initiated by the
addition of 20ml of the leaf homogenate, and was quenched after 2, 4, 6 or 10 min,
by the addition of 100ml of 10 M formic acid. The samples were oven dried and the
acid stable 14C determined by liquid scintillation counting, following residue
rehydration (400ml H2O) and the addition of 3.6 ml liquid scintillation cocktail
(Ultima Gold, PerkinElmer, UK).

For Rubisco inhibition using the tight binding Rubisco inhibitor, 2-carboxy-D-
arabinitol-1,5-bisphosphate (CABP), leaf homogenates were incubated on ice for
15 min in the presence of 50mM CABP25. Residual carboxylase activity (if any) was
then measured as described above.

28. Gray, B. N., Yang, H., Ahner, B. A. & Hanson, M. R. An efficient downstream box
fusion allows high-level accumulation of active bacterial beta-glucosidase in
tobacco chloroplasts. Plant Mol. Biol. 76, 345–355 (2011).

29. Bainbridge, G. et al. Engineering Rubisco to change its catalytic properties. J. Exp.
Bot. 46, 1269–1276 (1995).

30. Wintermans, J. F. & de Mots, A. Spectrophotometric characteristics of
chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta
109, 448–453 (1965).
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Extended Data Figure 1 | Rubisco and CcmM35 content of SeLSM35
tobacco leaves. The stated concentrations of purified Se Rubisco (a) and
CcmM35 (b) proteins were used as standards. a, Immunoblot using an
antibody against cyanobacterial LSU (top) and the standard curve used to
estimate the amount of cyanobacterial Rubisco in samples S1–S3 extracted
from SeLSM35 tobacco leaves (bottom). b, Immunoblot using an antibody
against CcmM (top) and the standard curve used to estimate the amount of

CcmM35 in samples S4–S6 extracted from SeLSM35 tobacco leaves (bottom).
The band intensities in the two standard curves were obtained with ImageJ
software and the standard curves with Microsoft Excel. c, The absolute and
relative amounts (mean 6 standard deviation) of CcmM35 and cyanobacterial
Rubisco in SeLSM35 tobacco line from two separate measurements. Each
Rubisco holoenzyme is assumed to be composed of 8 LSU and an unknown
quantity of SSU.
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Extended Data Figure 2 | Electron micrographs of ultrathin sections of leaf
mesophyll cells from the chloroplast transformant SeLSM35. Large
compartments containing cyanobacterial Rubisco and CcmM35 in the
chloroplast stroma are indicated by black arrows. Leaf tissues were prepared by

high pressure freeze fixation (HPF) in combination with immunogold labelling
using an antibody against CcmM. A secondary antibody conjugated with
10-nm gold particles was used for the labelling. Scale bars, 500 nm.
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Extended Data Figure 3 | Rubisco-specific 14CO2 fixation by crude leaf
homogenates from tobacco lines expressing cyanobacterial Rubisco (SeLSX
and SeLSM35) and wild-type tobacco (WT). a, Carboxylase activity assayed
with (1) and without (2) RuBP. b, Carboxylase activity assayed with (1) and

without (2) the inhibitor CABP. The rates of carboxylase activity (mols fixed
per mol act sites per s) are the means 6 standard deviation derived from the 2, 4
and 10 min data obtained in assays at 125 mM CO2 (corresponding to 10 mM
NaH14CO3, at pH 8.0).
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Extended Data Table 1 | Rubisco, total soluble protein and chlorophyll content of the wild-type and transformed homoplastomic tobacco
leaves of similar size, development and canopy position

The wild-type plants were grown in air and the transformants in air supplemented with 0.9% (v/v) CO2. Fresh 4 cm2 leaf samples were homogenized in (1 ml) ice-cold extraction buffer. The crude homogenate was
used for determination of chlorophyll and Rubisco content. The total soluble protein was determined by the Bradford method following extract clarification (13,200g, 5 min, 4uC). Values are means 6 standard
deviation from 3 different leaves per sample.
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Extended Data Table 2 | Oligonucleotides used in the construction of chloroplast transformation vectors, DNA blot analyses of the tobacco
chloroplast rbcL locus and RT–PCR analyses of the tobacco chloroplast rbcL gene and transgenes introduced in the transplastomic lines

The restriction sites are underlined.
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