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Abstract

Cyanobacterial HCO3
- transporters BCT1, SbtA and BicA are important

components of cyanobacterial CO2-concentration mechanisms. They also show

potential in applications aimed at improving photosynthetic rates and yield when

expressed in the chloroplasts of C3 crop species. The present study investigated

the feasibility of using Escherichia coli to assess function of a range of SbtA and

BicA transporters in a heterologous expression system, ultimately for selection of

transporters suitable for chloroplast expression. Here, we demonstrate that six b-

forms of SbtA are active in E. coli, although other tested bicarbonate transporters

were inactive. The sbtA clones were derived from Synechococcus sp. WH5701,

Cyanobium sp. PCC7001, Cyanobium sp. PCC6307, Synechococcus elongatus

PCC7942, Synechocystis sp. PCC6803, and Synechococcus sp. PCC7002. The

six SbtA homologs varied in bicarbonate uptake kinetics and sodium requirements

in E. coli. In particular, SbtA from PCC7001 showed the lowest uptake affinity and

highest flux rate and was capable of increasing the internal inorganic carbon pool

by more than 8 mM relative to controls lacking transporters. Importantly, we were

able to show that the SbtB protein (encoded by a companion gene near sbtA) binds

to SbtA and suppresses bicarbonate uptake function of SbtA in E. coli, suggesting a

role in post-translational regulation of SbtA, possibly as an inhibitor in the dark. This

study established E. coli as a heterologous expression and analysis system for

HCO3
- transporters from cyanobacteria, and identified several SbtA transporters as

useful for expression in the chloroplast inner envelope membranes of higher plants.
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Introduction

Due to projections in global population growth, there have been calls for a near

doubling of global food production by 2050 [1, 2]. To meet this demand, scientists

are exploring numerous genetic engineering strategies to increase crop yields by

improving photosynthesis, particularly by increasing photosynthetic rates and/or

water-use efficiency in crops. In C3 crop plants the current level of atmospheric

CO2 is sub-optimal for maximal photosynthetic performance, with the competing

oxygenase reaction of the primary carboxylase, Rubisco, accounting for around

30% of theoretical loss to photosynthetic CO2 fixation capacity [3]. Field studies

have shown that elevated CO2 levels can increase photosynthetic rates and crop

yields [4, 5]. This suggests that strategies aimed at raising CO2 levels in the

chloroplast may be a useful approach. Recently, one multiple-stage approach to

raise CO2 levels in the chloroplasts of crops was proposed based on the CO2-

concentrating mechanism (CCM) components of photosynthetic bacteria

cyanobacteria [6–8]. Two key features of the cyanobacterial CCM are the use of

active transport systems for uptake of inorganic carbon (Ci, including CO2 and

HCO3
-) and the elevation of CO2 levels within unique protein micro-

compartments, called carboxysomes, which are packed with the Rubisco enzyme

[9, 10].

Cyanobacterial Ci uptake systems in model species such as Synechococcus

elongatus PCC7942 and Synechocystis sp. PCC6803 are composed of two known

active CO2 uptake systems and up to three known HCO3
- transporters. They have

different substrate affinities, maximal rates and energisation, which may provide

different advantages for expression in C3 chloroplasts. Three HCO3
- transporters,

including BCT1, SbtA and BicA, have been identified so far [6]. Among these

transporters, BCT1 is a four-subunit ATP-binding cassette (ABC) transporter

while SbtA and BicA are both single subunit transporters. SbtA and BicA have

been initially chosen as candidates to be expressed in crops because they are both

encoded by a single gene and therefore much easier to manipulate.

The SbtA transporter is a high affinity and low flux rate HCO3
- transporter, for

example, SbtA affinity determined in Synechococcus PCC7002 has a Km[HCO3
-] of

about 2 mM [11]. SbtA is Na+-dependent, requiring about 1 mM Na+ for half-

maximal HCO3
- transport activity [12]. The gene encoding SbtA, sbtA, is

inducible under limiting Ci conditions. SbtA has 10 transmembrane domains, in a

5+5 inverted orientation with the N- and C-termini extra cellular and the two

halves of the transporter are separated by an intracellular loop of variable size [9].

Curiously, a gene, sbtB, encoding a small soluble protein (SbtB) is found to exist

in the same operon as sbtA in some cyanobacterial species and nearby in others

[13]. The sbtB gene is also expressed under Ci-limited conditions in Synechocystis

sp. PCC6803 and Synechococcus elongatus PCC7942 [14, 15]. The co-occurrence

suggests that SbtB may be functionally related to SbtA, possibly as a regulator, but

this has not yet been investigated.

The BicA transporter can support a high photosynthetic flux rate, although it

has a relatively low transport affinity with a Km [HCO3
-] of 75–350 mM [11]. BicA
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is also Na+-dependent and requires, similar to SbtA, about 1 mM Na+ for half-

maximal transport activity [11]. BicA is predicted to be a single subunit

transporter and belongs to the SulP/SLC26A protein family. Topology mapping

and threading to a known crystal structure of related proteins strongly support 14

transmembrane domains with the N- and C- termini in the cytoplasm [16].

Although both transporters seem good candidates for expression in

chloroplasts, a complicating fact is that both undergo some form of post-

translational regulation because Ci uptake in cyanobacteria appears to be inactive

in the dark [8]. Therefore it is unclear whether these transporters will be active

when expressed in crops. In fact, recently, BicA expressed in the tobacco

chloroplasts appeared to be inactive [17]. A better understanding of their

regulation may allow manipulation of their regulatory systems or co-expression of

activators, overcoming possible problems with inhibition. To this end we needed

to develop a heterologous system for selection and characterisation of transporters

which are active in non-cyanobacterial environment.

Both SbtA and BicA are widely distributed within cyanobacterial species,

resulting in the availability of many different homologs to screen for ease of

expression and regulatory properties [13]. Cyanobacteria are divided into two

phylogenetic groups based on their Rubisco and carboxysomes phylogenies,

referred to as a-cyanobacteria (largely oceanic) and b-cyanobacteria (freshwater,

estuarine), based on their Rubisco and carboxysomes phylogenies [18]. In general,

a-cyanobacteria have only a minimal CCM and possess fewer constitutively

expressed Ci transporters while the b-cyanobacteria have much more diverse

range of Ci transporters [13, 18]. In addition to generally defined a- and b-

cyanobacteria, some strains of a-cyanobacteria (typically Cyanobium strains) have

been classified as transitional strains since they have moved to freshwater

estuarine environments and gained genes, including Ci uptake systems, from b-

cyanobacteria, probably through horizontal gene transfer [13]. This conclusion

was supported by the similarity in kinetic response of external Ci by the

transitional strain, Cyanobium spp. PCC7001, to b-cyanobacteria Synechococcus

elongatus PCC7942 [19].

There also exist sequence differences within each transporter family that

correlate with the cyanobacterial classification. For example, the loop connecting

helix 5 and 6 of SbtA in the transitional strains is much shorter than the loop in b-

cyanobacteria [9]. It has been suggested a partial deletion in this region may have

occurred at the time of horizontal gene transfer [13]. The functional importance

of the helix 5/6 loop remains to be determined, but it may have a regulatory role

or a link with HCO3
- transport affinity. To date, transporters shown to have

HCO3
- uptake activity are mostly from a-cyanobacteria, including SbtA from

Synechocystis sp. PCC6803 [12] and Synechococcus sp. PCC7002 [11], BicA from

Synechococcus sp. PCC7002 [11] and BCT1 from Synechococcus elongatus PCC7942

[20]; the only a-cyanobacterial HCO3
- transporter analysed was BicA from

Synechococcus WH8102 [11].

The aim of the present study was to investigate the expression of a range of

SbtA and BicA transporters in E. coli for further characterisation. E. coli is
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considered a good candidate for study of cyanobacterial HCO3
- transporters for

two reasons. First, there already exists a high CO2-dependent E. coli mutant

(EDCM636) that may allow positive selection of HCO3
- transporters. E. coli

possesses two carbonic anhydrases, Can and CynT [21]. CynT is normally not

expressed, so the can gene knockout lacks carbonic anhydrase (CA) activity, and

E. coli can grow in high CO2 but not in normal air due to lack of internal HCO3
-

supply [21]. Since HCO3
- is required for anaplerotic metabolism, expression of an

active HCO3
- transporter should theoretically restore growth of CA-deficient E.

coli in air and therefore could allow positive screening of HCO3
- transporters.

Second, topology mapping of BicA and SbtA [9, 22] has determined that both full

length transporters are expressed in the E. coli plasma membrane, although uptake

function was not previously examined. A potential drawback of utilising E. coli as

a heterologous system for quantitative HCO3
- transport analyses is that the CO2

generated by cell respiration may introduce errors in determining the kinetics of
14C-HCO3

- uptake by these transporters which is further discussed in the context

of the results presented.

In this paper, we demonstrate that six SbtA homologs are active in our E. coli

expression system, three from the transitional strains, Synechococcus sp. WH5701

(SbtA5701), Cyanobium spp. PCC7001 (SbtA7001) and Cyanobium sp. PCC6307

(SbtA6307) and three from b-cyanobacteria, Synechococcus elongatus PCC7942

(SbtA7942), Synechocystis sp. PCC6803 (SbtA6803), and Synechococcus sp.

PCC7002 (SbtA7002). Importantly, this is also the first experimental evidence that

four SbtA homologs, SbtA7942, SbtA6307, SbtA5701 and SbtA7001, are in fact

functional HCO3
- transporters. Additionally, our analyses begin to define a role

for SbtB as a post-translational regulator of SbtA, potentially via direct interaction

of these two proteins.

Results

Screening for putative HCO3
-
transporters that are functional in

E. coli
A number of putative HCO3

- transporters were screened in E. coli for HCO3
-

uptake activity (Table 1). The respective cDNA sequence of each transporter was

cloned into the pSE2 vector as illustrated in Fig. 1. The threshold for significant

activity was set at a 2-fold increase in HCO3
- uptake compared to an empty pSE2

vector (negative control) at pH 8. All putative transporters belong to families

where some members had been proven to have HCO3
- transport activity,

including BCT1 [20], BicA7002 [11], SbtA6803 [12], and SbtA7002 [11]. We also

included uncharacterised SbtA and BicA homologs in our analysis. Note that SbtA

proteins from oceanic a-cyanobacteria were excluded since initial testing of SbtA

from Prochlorococcus MED4 (CCMP1986) in our cyanobacterial expression

system [11] had revealed no detectable transport activity. Two screening methods

were used: HCO3
- uptake experiments and complementation of the CA-deficient

strain EDCM636.
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Expression of all SbtA homologs, with the exception of the Labrenzia SbtA-like

transporter, facilitated enhanced HCO3
- uptake in E. coli while none of the other

potential bicarbonate transporter appeared to increase HCO3
- uptake of E. coli

(Table 1), strongly suggesting that all tested cyanobacterial SbtA homologs were

able to transport HCO3
- and to function in the heterologous E. coli system.

Consistent with the uptake data, growth of EDCM636 in air was complemented

only by expression of cyanobacterial SbtA homologs. There was no obvious

difference in the growth of EDCM636 in the presence of kinetically different SbtA

homologs, suggesting that they were all capable of supplying enough HCO3
- for

cell growth at room temperature (Fig. 2).

Sodium dependency of HCO3
-
uptake by SbtA homologs

As Synechocystis PCC6803 SbtA is Na+ dependent [12], we expected that this

would also be the case for other SbtA homologs. Uptake activities of all SbtA

species were stimulated by addition of NaCl, but not by comparable addition of

KCl (S1 Fig.), indicating that these SbtA homologs are Na+ dependent in E. coli.

The sodium dependence of each transporter was characterised in detail, ensuring

other kinetic properties were analysed without Na+ limitation.

SbtA7942 and SbtA6307 required less Na+ compared to the others, with

1.5 mM and 0.8 mM Na+ for half maximal activities, respectively (Fig. 3 and

Table 2). SbtA6803, SbtA5701 and SbtA7001 had intermediate requirements for

Na+ and needed 3 to 5 mM Na+ to achieve half maximal HCO3
- uptake rates. The

Table 1. HCO3
- transporters tested for function in E. coli.

Transporter Derivation Strain HCO3
- Uptake

ATP-binding Cassette (ABC) Family

BCT1 Synechococcus spp. PCC7942 No

Sulphate Permease (SulP) Family

BicA7002 Synechococcus spp. PCC 7002 No

BicA5701 Synechococcus spp. WH5701 No

BicA1 7001 Cyanobium spp. PCC7001 No

BicA2 7001 Cyanobium spp. PCC7001 No

Vibrio SulP Vibrio parahaemolyticus No

Sodium Dependent Bicarbonate Transporter (SBT) Family

SbtA7001 (SbtA1) Cyanobium spp. PCC7001 Yes

SbtA7942 Synechococcus spp. PCC7942 Yes

SbtA6803 Synechocystis spp. PCC6803 Yes

SbtA7002 Synechococcus spp. PCC 7002 Yes

SbtA6307 (SbtA1) Cyanobium spp. PCC6307 Yes

SbtA5701 (SbtA1) Synechococcus spp. WH5701 Yes

Labrenzia SbtA-like Labrenzia alexandrii DFL-11 No

A number of known and putative HCO3
- transporters were tested in E. coli DH5a for potential H14CO3

- uptake activity measured by the silicon oil
centrifugation-filtration assay.

doi:10.1371/journal.pone.0115905.t001
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SbtA from a coastal marine species, SbtA7002, had the largest Na+ requirement of

about 15 mM Na+ half maximal HCO3
- uptake rates. To some extent, the Na+

requirements for expressed SbtA clones were related to preferred habitat ranges

[6] of the source species of each clone, with freshwater strains (PCC7942,

PCC6803, PCC6307) and freshwater/estuarine strains (WH5701, PCC7001)

having lower half-requirements than the marine/euryhaline strain, Synechococcus

PCC7002. All SbtA transporters were saturated by 50 mM NaCl.

Affinity estimations and maximal HCO3
-
uptake rates of SbtAs

Accurate determination of Km[HCO3
-] of high affinity SbtA transporters was

difficult in E. coli because of CO2 generated from cell respiration which altered the

effective unlabelled HCO3
- concentration. Despite all precautions (see material

Fig. 1. Construct designs involved in characterisation of SbtA transporters. In all constructs, expression
of target proteins was driven by the lac promoter on plasmid pSE2. A. Schematic of typical SbtA constructs
shown in Table 4. B. Schematic of typical SbtAB constructs shown in Table 4. In order to generate 7942AnsB,
the start codon of sbtB (ATG) in SbtAB7942 construct was replaced with (GGG) to form a SmaI site and a later
GTG -valine 41 bp downstream of the start codon was replaced with GTC-valine. In this way, expression of
sbtB is completely abolished in 7942AnsB. C. Illustrated location for the c-Myc tag in 7942AMyc. SD, Shine-
Dalgarno sequence.

doi:10.1371/journal.pone.0115905.g001
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and Methods), around 80 mM Ci was generated due to cell respiration, as

determined by mass spectrometer analysis. Most of the respiratory CO2 is present

as HCO3
- in the buffer at alkaline pH. This source of HCO3

- increases the

concentration of total HCO3
- and consequently reduces 14C specific activities

(CPM nmol-1). Taking this into account resulted in the transformation of an

Fig. 2. Complementation of the EDCM636 mutant by expression of various SbtA clones.
Complementation of CA-deficient strain EDCM636 expressing one of the six SbtA clones, or empty vector
(pSE2) as a control. A strain with empty pSE2, EDCM636a, was selected for expressed CA. EDCM636a was
used as a positive control. The top panel was for growth in LB media; bottom panel was for growth in M9
media.

doi:10.1371/journal.pone.0115905.g002
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Fig. 3. Sodiumdependency of HCO3
- uptake due to expression of variousSbtA clones.Cells were spun down

andwashed twice with CO2-free uptake buffer (22 mMpotassium phosphate buffer, 20 mMpH 8Bis-Tris-Propane-
HCl pH 8). Additional NaCl was added to cells at various concentrations prior to uptake experiments. Net uptake
rateswere calculated by subtracting data of pSE2 empty (18–35 nmol mg total protein21 h21) from raw data of each
transporter. Values in the figure are means ¡ SD (n56). SbtA7942, black diamond; SbtA6703, black triangle;
SbtA6803, white square; SbtA5701, white circle; SbtA7001, white triangle and SbtA7002, white diamond.

doi:10.1371/journal.pone.0115905.g003
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initial raw Michaelis-Menten-like curve into a roughly flat line for SbtA7942

(Fig. 4A). This suggested that even the lowest Ci concentration was well above the

true Km[HCO3
-]. Unfortunately, this was case for all the other SbtA transporters

except for SbtA7001. It can only be concluded that the Km[HCO3
-] of SbtA7942,

SbtA6803, SbtA7002, SbtA6307 and SbtA5701 were under 100 mM (20 mM

injected HCO3
- plus ,80 mM respiratory HCO3

-). SbtA7001, however, appears to

have lower affinity and its Km[HCO3
-] was calculated to be 189 mM (Fig. 4B).

Maximal uptake rates for HCO3
- of the different SbtAs can still be readily

determined when respiratory CO2 was taken into account (Table 3). SbtA7001

showed a maximal uptake rate for HCO3
- at over 1200 nmol mg total protein21

h21. SbtA5701 and SbtA6307 had the lowest maximal activity and were able to

transport HCO3
- at 200 nmol and 400 nmol mg total protein21 h21, respectively.

SbtA7942, SbtA6803 and SbtA7002 had intermediate maximal HCO3
- uptake

rates, ranging from 500 to 800 nmol mg total protein21 h21. For the BicA

bicarbonate transporter a correlation between Vmax and Km[HCO3
-] has been

observed for three BicA forms [11], and certainly SbtA7001 has the highest Vmax

and Km, but the lack of precise Km data for the other SbtA forms makes full

analysis premature at this point in time.

Relative abundance of SbtAs in E. coli
In order to compare relative expression levels of the different SbtA proteins in E.

coli, immunodetection was used to investigate abundance of all SbtA proteins in

membrane-enriched fractions. A polyclonal anti-SbtA antibody cross-reacting

very specifically with all SbtA proteins was used in this study. A single band at a

molecular mass roughly 8–10 kD lower than predicted was observed for

SbtA7002, SbtA7001, SbtA5701 and SbtA6307 (Fig. 5). Note that aberrant

molecular mass on SDS PAGE is a very common observation with highly

hydrophobic membrane proteins [17, 23, 24]. Both SbtA7942 and SbtA6803 also

showed an additional band at around double the expected molecular weight. This

may be a dimeric form of SbtA that has not been entirely disrupted by ionic

detergent and reducing reagents. As equal amounts of total protein were loaded

on the gel, the relative amount of each SbtA protein could be estimated based on

Table 2. Sodium concentration required for half maximal and maximal activities of SbtA H14CO3
- uptake activity.

SbtA clone Na+ requirement for half maximal activity (mM) Na+ requirement for maximal activity (mM)

SbtA7942 1.5 5

SbtA6803 3 10

SbtA7002 15 50

SbtA6307 0.8 5

SbtA5701 3.5 10

SbtA7001 5 10

Values were derived from the curves in Fig. 3.

doi:10.1371/journal.pone.0115905.t002
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image pixel volumes relative to a dilution series of SbtA7942 ranging from 20

to100% total protein loaded. Estimated relative abundances were: SbtA6803

(41%), SbtA7002 (33%), SbtA 7001 (27%), SbtA5701 (12%) and SbtA6307

(39%).

Fig. 4. HCO3
- uptake of SbtA7942 and SbtA7001 against changes at external HCO3

- levels. Uptake was
measured as described in Materials and Methods. Respiratory HCO3

- levels were measured with MIMS
allowing a correction for dilution of 14C-HCO3

- specific activity. Values in the figures are means ¡ SD (n56).
A. HCO3

- uptake of SbtA7942. SbtA7942 Corrected (white diamond) uptake rates were calculated by
subtraction of respiratory carbon from the SbtA7942 Raw data (black diamond). Six concentrations of Ci (20 to
500 mM) were injected to pSE2 or SbtA7942 cells. Raw uptake rates for pSE2 control were 6 to 199 nmol
mg21 h21 and were corrected to 98 to 609 nmol mg21 h21. B. HCO3

- uptake of SbtA7001. SbtA7001
Corrected uptake rates (white triangle) were calculated by subtraction of respiratory Ci from the SbtA7001
Raw data (black triangle). Six concentrations of Ci (20 to 1000 mM) were injected to pSE2 or SbtA7001 cells.
Raw uptake rates for pSE2 control were 9 to 294 nmol mg21 h21 and were corrected to 30 to 383 nmol mg21

h21. The theoretical Michaelis-Menten curve (Broken line) was calculated from SbtA7001 Corrected data
(R250.9031).

doi:10.1371/journal.pone.0115905.g004
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Determination of relative HCO3
- uptake rates by correcting for the relative

abundances of the various SbtA proteins allows estimation of the specific activity

of each SbtA (Table 3). This suggests that there could be up to an eight-fold

difference in Vmax, with SbtA7001 having the highest maximal HCO3
- uptake

activity (4585 nmol mg total protein21 h21) and SbtA7942 the lowest (559 nmol

mg total protein21 h21).

Effects of active SbtA on internal Ci pools

It is envisaged that expression of an active HCO3
- transporter in the chloroplasts

of crop plants will need to elevate internal Ci levels [8] to subsequently improve

photosynthetic rates. Therefore, we investigated the effects of expression of SbtA

Table 3. Kinetics for HCO3
- uptake properties of SbtA homologs expressed in E. coli.

SbtA clone Km[HCO3
-] (mM)

Maximal HCO3
- uptake rates (nmol mg total

protein21 h21)
Corrected HCO3

- uptake rates based on relative
protein abundance

SbtA7942 ,100 559¡47 559

SbtA6803 ,100 756¡14 1844

SbtA7002 ,100 519¡50 1573

SbtA6307 ,100 390¡56 1000

SbtA5701 ,100 218¡19 1816

SbtA7001 189 1238¡127 4585

Data were corrected with respiratory Ci. Maximal HCO3
- uptake rates were calculated from maximal Ci uptake, assuming that 98.1% Ci was HCO3

- at pH 8.
Data were presented as mean ¡ SD (n56). Details of relative abundance of SbtA homologs were included in the Results section. Estimated relative
abundances were based on Fig. 5: SbtA7942 (100%), SbtA6803 (41%), SbtA7002 (33%), SbtA 7001 (27%), SbtA5701 (12%) and SbtA6307 (39%).

doi:10.1371/journal.pone.0115905.t003

Fig. 5. Relative accumulation of SbtA proteins expressed in enriched E. coli membrane fractions by
western blotting. The respective sbtA genes were introduced on pSE2 plasmids under control of the IPTG
inducible lac promoter. An empty vector (pSE2) served as negative control (right most lane). Gene expression
was induced for 2.5 h with 1 mM IPTG. The membrane-enriched protein fractions were isolated, and 50 mg
total protein per lane was separated by SDS-PAGE; bands detected by western blotting using the SbtA
antibody. * 5 SbtA monomer; ** 5 possible dimer of SbtA.

doi:10.1371/journal.pone.0115905.g005
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transporters on internal Ci pools of E. coli. The internal Ci pool (mM) was

calculated based on corrected Ci uptake and using cell volumes determined as

described in the Methods. Uptake of Ci was measured at 1000 mM injected Ci for

SbtA7001 and at 500 mM for the other SbtA transporters to ensure maximal

uptake rates for each SbtA transporter were achieved. Data were then corrected for

respiratory CO2.

Internal Ci pool sizes were significantly increased in the presence of active SbtA

transporters (Fig. 6). Expression of SbtA7001 led to the most significant increase,

of about 8-fold increase compared to pSE2 only control, while the presence of

SbtA5701 resulted in the smallest increase of only 2-fold. This equates to an

increase in the internal Ci pool by more than 8 mM for E. coli expressing

SbtA7001 and by 3–6 mM for the other SbtA transporters relative to controls

without expressed transporters.

The role of SbtB in the regulation of SbtA uptake activity

The role of SbtB has not yet been determined but the co-location of the sbtB gene

in, or near, the same operon as the sbtA gene suggests a potential role as a

regulator of SbtA uptake activity or transcriptional expression. To investigate

effects of SbtB on uptake activity of SbtA, five dicistronic sbtAB gene pairs were

co-expressed from the lac promoter in E. coli (Fig. 1). All plasmid constructs

lacked endogenous promoters for sbtA and/or sbtB genes to rule out the possibility

of transcriptional control of SbtB on sbtA transcription. These five pairs were

from cyanobacterial strains Synechococcus elongatus PCC7942 (SbtAB7942),

Synechocystis sp. PCC6803 (SbtAB6803), Cyanobium sp. PCC7001 (SbtAB7001),

Synechococcus sp. WH5701 (SbtAB5701) and Cyanobium gracile PCC6307

(SbtAB6307). Interestingly, active HCO3
- uptake was eliminated when SbtA was

co-expressed with SbtB for SbtAB7942, SbtAB6803, SbtAB7001 and SbtAB5701

(Fig. 7). This suggests that SbtB may act as an inhibitor of SbtA activity,

potentially by binding to SbtA. SbtAB6307 was an exception, with no effect of

SbtB on SbtA activity. To date, the reason for the lack of effect is unclear and

needs to be investigated further to determine whether SbtB has a different role in

this species or there is a problem with the expression of SbtB. When SbtB was not

present the transporters all showed normal uptake of HCO3
- (Fig. 7).

We investigated the possible regulatory role of SbtB further for SbtAB7942.

Firstly, we generated a construct in which the start codon of SbtB was mutated

from ATG to GGG, in construct 7942A-nsB (Fig. 1). This was designed to abolish

translation of SbtB without impacting on translation of SbtA. This construct

showed the same SbtA activity as the construct lacking SbtB (Fig. 7), indicating

that inhibition is dependent on the presence of the SbtB protein.

Secondly, we investigated whether SbtA and SbtB interact. SbtA and SbtB were

tagged with c-Myc and HA-His6, respectively, to allow immunochemical

detection and affinity purification of SbtB (Table 4 and Fig. 1). The preliminary

immunochemical detection of SbtA and SbtB with Western blotting showed that

when both proteins were present, SbtA and SbtB were detected in the membrane
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fraction (S2 Fig.). However, when SbtB was expressed alone, it was detected in the

soluble protein fraction (S2 Fig.). This result suggested a physical interaction

between the two proteins.

To confirm an interaction between SbtA and SbtB, we tested whether the two

proteins co-purify from solubilised membrane-enriched fractions. Affinity

chromatography was used to isolate His-tagged SbtB from the enriched

membrane fraction in a construct expressing both SbtA and SbtB (7942AmBH,

Table 4). Since only SbtB was tagged with His6, SbtA should not be detected

unless it interacts with SbtB. Western blotting with the anti-c-Myc antibody

showed that SbtA could be detected after purification (Fig. 8). No SbtA was

detected when the affinity chromatography was repeated with the same construct

lacking either SbtA or SbtB (Fig. 8). This strongly suggests that SbtA is purified

because it interacts with SbtB, rather than through a non-specific interaction with

the resin of the chromatography column.

Discussion

Characterisation of SbtA homologs in E. coli
In this study, we successfully demonstrated functional expression of a number of

HCO3
- transporters and their homologs in E. coli. To our knowledge, this is first

time this has been achieved in E. coli as a heterologous expression system. Six

Fig. 6. Internal Ci pool sizes of E. coli cells with the empty vector or various sbtA clones. The
expression vector used was the pSE2 vector. Internal Ci pools (mM) were calculated from maximum Ci
uptake and the cell volume of each strain. Ci uptakes were measured in the presence of 500 mM injected
H14CO3

- (except SbtA7001 which was 1000 mM) and corrected for respiratory Ci. Data as means ¡ SD
(n56). The pools size of cells with each SbtA transporter was significantly different from the pool size of cells
with the empty pSE2 vector as determined with the Welch’s T-test (all p,0.02).

doi:10.1371/journal.pone.0115905.g006
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cyanobacterial SbtA homologs were shown to display HCO3
- uptake while

members of the BicA and BCT1 families lacked any detectable uptake. It seems

that at least for BicA7002, additional regulator(s) are required for its function in

E. coli, because we were able to detect BicA in the enriched membrane fraction of

E. coli (S3 Fig.). The experiments to detect BCT1 proteins were not conducted due

to the lack of antibodies. In addition, this is the first experimental evidence that

SbtA7942, SbtA7001, SbtA6307 and SbtA5701 homologs function as HCO3
-

transporters. The latter three homologs were derived from transitional a-

cyanobacteria of the Cyanobium clade but their sbtA genes are thought to have

originated from b-cyanobacteria [13]. The other three homologs were derived

from b-cyanobacteria. All six SbtA homologs were able to complement the

EDCM636 CA-deficient mutant to restore growth at atmospheric CO2 levels

(Fig. 2).

The six SbtA homologs chosen from b-cyanobacteria and transitional strains

represent two groups showing minor protein sequence differences. Intriguingly,

the most notable variation is in the size of the loop between helices 5 and 6 which

separates the two homologous halves of the transporter [9, 13]. The loop is

consistently 35–40 amino acids shorter in the SbtA proteins from transitional

Fig. 7. HCO3
- uptake capacity assessed for five separate SbtAB pairs and 7942A-nsB. Uptake rates

were calculated by subtracting data for the empty pSE2 control (,22 nmol mg21 h21) from raw data of each
strain. Data were not corrected with respiratory Ci as this is encompassed in the control value. Values in the
figure are means ¡ SD (n56). The statistical significance of data was analysed with the Welch’s T-test. The
HCO3

- uptake rates of SbtA7942, SbtA6803, SbtA7001, SbtA7002 and SbtA5701 were significantly different
with or without corresponding SbtB (all p,0.01). The HCO3

- uptake rates of SbtA6307 had no significant
difference with or without SbtB6307 (p50.37). 7942A-nsB showed no significant difference in HCO3

- uptake
rates to SbtA7942 (p50.59).

doi:10.1371/journal.pone.0115905.g007

Cyanobacterial Bicarbonate Transporters Function in E. coli

PLOS ONE | DOI:10.1371/journal.pone.0115905 December 23, 2014 14 / 25



strains. We were interested in whether this correlated with any functional

differences in Na+ requirements, maximal HCO3
- uptake rates or Km[HCO3

-].

However, the six SbtA homologs showed various Na+ requirements and HCO3
-

uptake kinetics, unrelated to the sizes of the loop between helix 5 and 6, suggesting

that the determinants of the properties we examined lie in other areas of

difference.

Table 4. List of constructs involved in characterisation of SbtA transporters.

pSE2 Construct names Description

SbtA constructs SbtA7942 sbtA from Synechococcus sp. PCC7942

SbtA6803 sbtA from Synechocystis sp. PCC6803

SbtA7001 sbtA from Cyanobium sp. PCC7001

SbtA7002 sbtA from Synechococcus sp. PCC 7002

SbtA6307 sbtA from Cyanobium sp. PCC6307

SbtA5701 sbtA from Synechococcus sp. WH5701

SbtAB constructs SbtAB7942 Artificial dicistronic clone for sbtA and sbtB, Synechococcus PCC7942

SbtAB6803 sbtA and sbtB6803 cloned as a natural dicistronic context

SbtAB7001 sbtA and sbtB7001 cloned as a natural dicistronic context

SbtAB6307 sbtA and sbtB6307 cloned as a natural dicistronic context

SbtAB5701 sbtA and sbtB5701 cloned as a natural dicistronic context

7942A-nsB Start codon of sbtB altered (ATG to GGG) in SbtAB7942

Constructs for protein-protein interactions 7942AMyc c-Myc tag fused into loop 5/6 of sbtA7942 in SbtA7942 construct (at E203)

7942AB-HAH6 HA tag fused at the C-terminus of sbtB, based on SbtAB7942 construct

7942B-HAH6 sbtB only generated from ABHAH67942 by PCR

7942AMBH c-Myc tag fused into loop 5/6 of sbtA7942 based on the ABHAH6-7942
construct

All constructs were based on pSE2 vector in which the expression of proteins was driven by the lac promoter. A c-Myc tag was fused to the 5/6 loop of
SbtA7942 after position E203 of SbtA. The HA and His6 tags were fused to the C-terminus of SbtB7942. A schematic illustration of the constructs can be
found in Fig. 1.

doi:10.1371/journal.pone.0115905.t004

Fig. 8. Isolation of SbtA7942 by IMAC using SbtB-HAH6 as binding partner and detected by western
blotting. Gene expression was induced for 2.5 h with 1 mM IPTG. The membrane-enriched protein fractions
of E. coli containing the empty pSE2, 7942AMyc and 7942AMBH and 7942B-HAH6 vector were used for
IMAC isolation. A total of 40 mg total protein of IMAC elutes per lane was separated by SDS-PAGE and
subjected to Western blotting. Proteins were detected with the Anti-c-Myc antibody.

doi:10.1371/journal.pone.0115905.g008
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Advantages and limitations of an E. coli system for analysis of

cyanobacterial HCO3
-
transporters

Our main objective was to study cyanobacterial HCO3
- transporters in a

heterologous background where analysis was unlikely to be compromised by

cyanobacterial regulatory factors involved in their activation/deactivation. Given

its standard use in the laboratory for recombinant protein expression and

molecular genetics as well as availability of a wide range of metabolic mutants,

including carbonic anhydrase, E. coli was our system of choice. We developed two

independent assays for function: a silicon oil centrifugation-filtration uptake assay

and a complementation assay in E. coli. We were able to show that at least six

members of the SbtA HCO3
- transporter family are expressed and functional in

the absence of other cyanobacterial components and active photosynthesis. In

other words, SbtA alone has the desirable property of being constitutively active.

However, both assays have limitations that need to be taken into consideration.

While the uptake assay allowed us to identify some kinetic parameters of the

transporters, a drawback of this system is that we were not able to completely

remove inorganic carbon, mainly CO2, generated by cell respiration. In contrast,

respiratory Ci can be conveniently removed by a short period of photosynthetic

CO2 fixation in a closed cuvette when using photosynthetic organisms for this

type of analysis. In E. coli, the presence of respiratory Ci leads to dilution of

radioactivity and an inability to provide cells with near-zero levels of Ci during

uptake assays. The residual Ci concentration can be measured and corrected for,

however, it remains impossible to measure uptake at Ci concentrations below the

residual level. This is not problematic for kinetic measurements for HCO3
-

transporters with medium to low affinity, as illustrated by the case of SbtA7001.

However, existence of residual Ci hinders accurate determination of Km[HCO3
-]

for high affinity HCO3
- transporters, as illustrated by the case of the remaining

SbtA transporters. For example, in cyanobacteria, the SbtA7002 form is estimated

to have a transport affinity as low as 2 mM [11].

Complementation of the CA-deficient E. coli strain, EDCM636, provides a

convenient screen for function of individual transporters (Fig. 2). However, the

strain reverts to wild type at a relatively high frequency as a consequence of the

presence of a second wild type CA gene, cynT, that is not normally expressed,

leading to selection for expression in any screening assay. In fact, about 12% of

plated EDCM636 colonies regained CA activity and lost the need for high CO2 for

growth [21]. In our case, we found that the occurrence of reversion could be

reduced by taking extra precautions, for example using fresh cells from glycerol

stocks. Nevertheless, this strategy would be unsuitable for large scale functional

screening of HCO3
- transporters, for example, using cDNA or mutant libraries. In

spite of these drawbacks, the two assays described here have been valuable in

identifying and analysing HCO3
- transporters in a heterologous, non-photosyn-

thetic system and will be useful for future investigations of SbtA structure and

function.
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Post-translational regulation of SbtA by SbtB

One novel and important finding of this study is that SbtB serves as a post-

translational regulator of SbtA. Firstly, co-expression of SbtB inhibited HCO3
-

uptake by SbtA in four out of five sbtAB expression pairs. The only exception was

SbtAB6307 in which the uptake activity of SbtA6307 was not affected for

unknown reasons, which could be as simple as lack of expression of the SbtB6307

protein. There are no SbtB antibodies available for testing this possibility.

Generation of a tagged version of SbtB6307 with a HA or c-Myc epitope

detectable by commercially available antibodies would be required, which is part

of future investigations.

Secondly, the requirement for synthesis of the SbtB protein for inhibition and

the fact that substantial amounts of SbtA protein accumulate in the presence of

SbtB rules out regulation of expression at the transcriptional or translational level.

Thirdly, there is a strong indication for direct protein-protein interaction between

SbtA and SbtB. SbtA and SbtB was co-purified using a polyhistidine tag located on

SbtB, indicating a strong physical interaction between SbtA and SbtB. In addition,

immunodetection showed that SbtB7942 was only detectable in the plasma

membrane when co-expressed with SbtA in E. coli (S2 Fig.). It is likely that in E.

coli, SbtB regulates SbtA independently of secondary regulation processes in

cyanobacteria. As such, it is interesting to speculate that in cyanobacteria SbtB

might acts as a ‘‘curfew’’ protein to help inactivate SbtA in the dark, and that

cyanobacteria would also have a mechanism to ‘‘unlock’’ SbtA in the light. SbtB

shares low similarity (21% identity) in amino acid sequence with cyanobacterial

PII proteins, and an unpublished crystal structure for SbtB from Anabaena (www.

ncbi.nlm.nih.gov structure 3DFE) shows that b-SbtB has a very similar fold to PII

(GlnB; structure 1QY7) from cyanobacteria. PII/GlnB proteins form trimers, are

widely distributed in many bacteria, and are key regulators of nitrogen

metabolism. This occurs through binding of effector molecules, indicating

nitrogen status such as oxo-glutarate and ADP and post-translational interactions

with a range of proteins [25].

It is noteworthy that the trimeric AmtB ammonia channel from E. coli is

regulated by the binding of the GlnK trimer (PII homolog), with AmtB being

inactive for ammonia influx when GlnK is bound, and active when unbound, at

high levels of oxo-glutarate, ATP and Mg2+ [26, 27]. AmtB-GlnK could therefore

make a useful working model for analysis of SbtA-SbtB regulation, despite

potential differences in effectors required. Furthermore, because SbtB crystallises

as a trimer (see above), it seems sensible to postulate that SbtA functions as a

trimer; data suggesting that SbtA6803 runs on native gels as a 160 kDa tetramer

[15] could also potentially be re-interpreted as 156 kDa expected size (3 times

40 kDa for SbtA plus 3 times 12 kDa SbtB). Future investigation is required to

better understand the mechanism of SbtA regulation by SbtB, its role in

modulating HCO3
- uptake activity of SbtA, and whether SbtB could also be

involved in other signalling pathways in a similar way to PII (GlnB).
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SbtA candidates for expression in crop plants

One longer term goal of our research is to identify candidate HCO3
- transporters

to be expressed in crops [7, 8]. This requires that the transporters are active in

heterologous systems and have kinetic properties that are consistent with

functional expression in the chloroplast. Several SbtA homologs we tested are

good candidates, with the best able to increase the Ci pool inside E. coli cells by up

to 9 mM. We tested HCO3
- transporters from the BicA homolog grouping and

found that none was functional in E. coli under our experimental conditions.

Whether this is due to a need for unidentified regulatory factors is not yet known.

However, all members of the SbtA family were functional and also showed

interesting variation in their kinetic characteristics, allowing selection for those

with the most potential for chloroplast expression.

It is estimated that at least 250 mM HCO3
- is present in the C3 leaf cytosol

under ambient air [28] and that 1 to 3 mM Na+ is present in the cytoplasm [29],

as an inwardly directed Na+ gradient across the chloroplast inner membrane [30].

This could potentially provide a suitable environment for increased accumulation

of Ci in the chloroplast due to expression of at least some of the SbtA homologs

characterised here. The Km[HCO3
-] of all SbtAs tested was below the 250 mM

HCO3
- present in the leaf cytosol. SbtA7942, SbtA6803, SbtA6307 and SbtA5701

may represent more suitable candidates to be expressed in crops because of their

lower requirements for Na+, with SbtA7942 and SbtA6307 needing only 1.5 mM

and 0.8 mM Na+ respectively for half maximal uptake (Table 2). We are currently

investigating the suitability of SbtA for functional expression in C3 chloroplasts.

Materials and Methods

Bacterial strains and growth conditions

E. coli K12 strain DH5a (F– W80lacZDM15 D(lacZYA-argF) U169 recA1 endA1

hsdR17 (rK–, mK+) phoA supE44 l– thi-1 gyrA96 relA1) was used routinely for

cloning, storage of plasmids and general expression of membrane proteins. E. coli

for screening of HCO3
- transporters was a CA-deficient strain EDCM636, which is

derived from E. coli MG1655 (F- l-ilvG-rfb-50 rph-1) harbouring a kanamycin

resistance marker replacing a deletion of the CA encoding gene can (Dcan) [21].

EDCM636a, a strain with restored CA function, was specially selected to provide a

positive control in dilution spotting assays (see below). A second control strain

also contained an empty pSE2 vector. Genes encoding for membrane proteins

were cloned into the pSE2 vector where their expression was driven by the IPTG-

inducible lacZ promoter [31]. The pSE2 vector carries a spectinomycin resistance

gene as selectable marker. The main plasmid constructs involved in the

characterisation of SbtA transporters are listed in Table 4 and Fig. 1.

Luria–Bertani (LB) broth and LB agar were used for routine bacterial growth in

liquid culture while shaking or on solid medium, respectively. Unless specified,

cells were grown at 37 C̊. For dilution spotting assay, E. coli was cultured on LB

agar or M9 minimal agar with 0.4% glycerol [32]. Where applicable, antibiotics
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were added to the following final concentrations: kanamycin at 50 mg ml21 and

spectinomycin at 100 mg ml21.

Dilution spotting assay

E. coli strains were grown on LB agar plates overnight. For strain EDCM636,

0.1 mM sodium azide was added to plates to induce expression of cynT [21]. The

next morning, cells were resuspended in MilliQ water to OD600 of 0.1, and then

diluted to 1023, 1024 and 1025. An aliquot of 10 ml of each dilution was pipetted

onto LB agar containing 20 mM Epps-HCl pH 8 or M9 agar with 0.4% glycerol

and 20 mM Epps-HCl pH 8 supplemented with the appropriate antibiotics.

Protein expression was induced with IPTG at a final concentration of 0.2 mM.

Plates were incubated at 24 C̊ for 2 days (LB) and 6 days (M9).

Bicarbonate uptake measurements

Bacterial strains for HCO3
- transporter expression and functional analysis were

pre-grown for 16 h in 3 ml LB broth with spectinomycin, inoculated into 10 ml

LB-spectinomycin broth and grown for 1 h. A final concentration of 1 mM IPTG

was added to induce transporter gene expression for 3 h unless stated otherwise.

Optimisation experiments showed the level of expression increased for 4 h IPTG

induction but declined subsequently (S4 Fig.). Cells were harvested by

centrifugation at 9,000 g for 30 s and washed twice with CO2-free uptake buffer

(22 mM potassium phosphate, 20 mM Bis-Tris-Propane-HCl pH 8 and 50 mM

NaCl. Modified uptake buffers with varying concentrations of Na+ were used in

experiments to determine Na+ dependency of HCO3
- uptake. To remove CO2, the

buffer was bubbled with high purity N2 for 3 days. Immediately before each

uptake assay, cell aliquots were spun down and resuspended in CO2-free uptake

buffer to minimize the time for respiratory CO2 release into the buffer.

Inorganic carbon uptake was determined by the silicon oil centrifugation-

filtration assay described previously [33]. A stock solution of radioactive

NaH14CO3 in ‘‘cold’’ NaHCO3 (25 mM, 0.11 mCi ml21 pH 9.5) was added to

cells at a final concentration of 50 mM (additions of NaH14CO3 were varied for

kinetic measurements), cells were mixed and 100 ml was aliquots were transferred

to micro-centrifuge tubes containing 5 ml of ‘‘kill’’ solution (3 M NaOH, 50%

methanol) overlaid with 50 ml silicon oil mixture (AR20:AR200 4:3.5 v/v).

Bicarbonate uptake was stopped after 30 s by centrifugation, which was the

shortest time in which HCO3
- uptake reached saturation (S5 Fig.). Tubes were

frozen instantaneously in liquid nitrogen for further processing.

The tips of micro-centrifuge tubes containing the cell pellet in ‘‘kill’’ solution

were cut off, cell pellets resuspended in 300 ml 2 M NaOH in scintillation vials,

and 3 ml scintillation fluid (Ultima Gold XR, PerkinElmer) was added before

measuring 14C CPM in a Beckman-Coulter scintillation counter. The specific

activity of NaH14CO3 stock solution was calculated from CPM of 1 ml in 200 ml

2 M NaOH. Respiratory CO2 contamination was determined from cells treated as
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for H14CO3
- uptake experiments except using non-radioactive uptake buffer. After

cells were spun down the supernatant was immediately transferred to a new tube,

stored frozen and total Ci in the supernatant was measured with a membrane inlet

mass spectrometer [34]. HCO3
- uptake rates were calculated as 98.1% of the raw

Ci uptake rates based on the pKa of CO2 to HCO3
- at pH 8, 24 C̊ and the ionic

strength of the assay buffer [35]. Total protein concentration of each sample was

determined using a BCA protein assay kit (Pierce) according to the

manufacturer’s protocol with bovine serum albumin as a standard.

Cell volume measurements

Silicon oil centrifugation-filtration removes most excess buffer as cells are spun

down through the silicon oil layer except for a thin water (buffer) shell that forms

around each cell. To determine the true cell volume, the total of the cell space plus

the water shell is estimated from tritiated (3H) water which can enter E. coli cells

and outer space. The water shell is estimated from 14C-Inulin, which cannot enter

E. coli cells [36]. Thus, cell volume can be calculated by subtracting the water shell

volume from the total.

Silicon oil centrifugation-filtration assays were performed as described above

except that tritium or 14C-inulin was added to cells at a final concentration of

0.3 mCi ml21. The incubation time was 10 min for tritium and 30 s for 14C-

inulin. After centrifugation, 1 ml of the supernatant in each tube was kept for

determination of specific activities. Cell volume (ml) was calculated for 1 ml cells

at OD60051. Cells containing the pSE2 vector had a combined cell volume of 2 to

2.5 ml whereas cells expressing the SbtA PCC7942 protein had a combined cell

volume of 1 to 1.5 ml (averaged from at least 3 biological replications).

Preparation of membrane-enriched protein fractions of E. coli
Cell cultures grown for 14 h in LB broth with spectinomycin were diluted 1:3, and

after 1 h cells were induced for 2.5 h with 1 mM IPTG (final concentration). Cells

were washed twice in lysis buffer (100 mM NaCl, 10 mM MgCl2 and 25 mM Tris-

HCl, pH 8.0). After one freeze and thaw cycle, cell pellets were resuspended in

lysis buffer with 1.4% (v/v) protease inhibitor (PI) cocktail (Complete mini,

Roche) and approx. 100 mL of 0.1 mm glass beads (Sigma, USA). Cells were

disrupted in a Tissuelyzer (Retsch, Germany) shaking for 5 min at 30 Hz in

1.5 mL microfuge tubes. Cell debris was removed by centrifugation for 15 s at

14,000 g at 4 C̊ and transfer of the supernatants to new tubes. Crude membranes

were collected by centrifugation at 14,000 g at 4 C̊ for 10 min. For immunode-

tection, the supernatant (soluble protein fraction) and the pellets (crude

membrane fraction) were supplemented with sodium dodecyl sulfate (SDS)

sample buffer to final concentrations of 62.5 mM Tris-HCl, pH 6.8, 4% (w/v)

SDS, 1 mM dithiothreitol (DTT) and 10% glycerol. Both fractions were incubated

at 70 C̊ for 20 min. The crude membrane fraction was centrifuged at 14,000 g for

15 min to precipitate insolubles. The total protein concentration of soluble
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protein fraction and enriched membrane fraction was determined with a

detergent compatible (DC) protein assay kit (BioRad). Bromophenol blue (2 mg

ml21 final) was added prior to analysis by SDS-PAGE.

Isolation of SbtA:SbtB complexes

For isolation of SbtA:SbtB-HA-H6 complexes a crude membrane fraction was

prepared and resuspended in buffer A (50 mM Bis-Tris pH 6.0, 2 mM CaCl2,

1 mM DTT, 10% glycerol with PI), frozen in liquid nitrogen and stored at -20 C̊.

Immobilized metal affinity chromatography (IMAC) was used for protein

purification adapted from the method for isolating the native E. coli respiratory

Complex I [37]. The following steps were carried out at 4 C̊. In brief, dodecyl-b-

D-maltoside (DDM) was added to the crude membrane fraction to a final

concentration of 1.2% (w/v). Samples were gently mixed for 1 h and centrifuged

in a bench-top micro-centrifuge at 14,000 g for 20 min. The supernatant was

transferred to a new tube, gradually supplemented with NaCl to a final

concentration of 200 mM and mixed with IMAC resin (Profinity IMAC Ni-

charged resins, BioRad) equilibrated with buffer A. The mixture was incubated

with gentle mixing for 1 h, loaded onto a gravity packed column, and then washed

with 2 column volumes of wash buffer (buffer A, 200 mM NaCl, 0.1% DDM and

5 mM histidine). The proteins were eluted with buffer A containing 200 mM

NaCl, 0.1% DDM and 200 mM histidine. The eluates were mixed with SDS

sample buffer and the concentration of total protein content was determined as

described above.

SDS-PAGE and western blotting

E. coli membrane and soluble protein fractions were separated by SDS-PAGE on

4-12% Bis-Tris protein gels (NuPAGE, Invitrogen, USA) as described by the

manufacturer. The expression level of SbtA was detected immuno-chemically after

transfer to PVDF membrane with a polyclonal antibody (Agrisera, Sweden)

directed against a conserved epitope of SbtA proteins from many b-cyanobacteria

(PTLRAGIPSANPSAY, S6 Fig.). Tagged proteins were detected with monoclonal

antibodies against these epitopes, anti-c-Myc (against EQKLISEEDL) or anti-HA

(against YPYDVPDYA) (Sigma, USA). Proteins were visualized by fluorescence

detection with an alkaline phosphatase-conjugated secondary antibody and the

AttoPhos detection system (Promega, USA) on a Versadoc imager (BioRad, USA).

Dilution series of the crude membrane fraction of SbtA7942 were loaded onto

SDS-PAGE gels to ensure that the amount of proteins in samples were in the

linear range for semi-quantitative analyses using Quantity One software (BioRad,

USA).
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Supporting Information

S1 Fig. The effect of KCl and NaCl on the HCO3
- uptake rates by SbtAs. Cells

were prepared as described in the Methods except that a modified CO2-free buffer

with 1 mM NaCl was used. Five mM KCl or NaCl was added to cells before the

uptake experiments, which resulted in 1 mM NaCl +5 mM KCl or 6 mM NaCl,

respectively. Comparable amount of MilliQ water was added to cells as the negative

controls (1 mM NaCl + MilliQ). The uptake rates were calculated by subtracting

data of the empty pSE2 vector (25,30 nmol mg total protein-1 hour-1) from raw

data for each transporter. Values in the figure are means ¡ SD (n56).

doi:10.1371/journal.pone.0115905.s001 (TIF)

S2 Fig. Detection of SbtA7942 and SbtB7942 proteins in E. coli by western

blotting. Gene expression was induced for 2.5 h with 1 mM IPTG. The soluble

protein (S) and the membrane-enriched protein (M) fractions of E. coli

containing the empty pSE2, 7942AB-HAH6 and 7942B-HAH6 vectors were used.

A total of 30 mg total protein of each fraction per lane was separated by SDS-

PAGE and subjected to Western blotting. Proteins were detected with the

antibody cocktail of the SbtA antibody and the anti-HA antibody. * 5 SbtA

monomer; # 5 SbtB monomer; ## 5 possible dimer of SbtB.

doi:10.1371/journal.pone.0115905.s002 (TIF)

S3 Fig. Detection of BicA7002 protein in the plasma membrane of E. coli by

western blotting. Gene expression was induced for 2.5 h with 1 mM IPTG. The

membrane-enriched protein fractions of E. coli containing the empty pSE2 and

BicA7002 vectors were used. A total of 30 mg total protein of each fraction per lane

was separated by SDS-PAGE and subjected to Western blotting. Proteins were

detected with the antibody targeting the STAS domain of BicA. * 5 BicA

monomer; ** 5 possible dimer of BicA.

doi:10.1371/journal.pone.0115905.s003 (TIF)

S4 Fig. Optimisation of the induction time required for expression of SbtA7942

and SbtA7001. Cultures were prepared as described in Materials and Methods.

Expression of SbtA7942 (diamond) and SbtA7001 (triangle) was induced by

adding IPTG (1 mM) for up to 5 hours with samples taken every hour to

determine uptake rates. Uptake experiments were performed in the presence of

50 mM NaCl and 50 mM H14CO3
-. Net uptake was calculated by subtracting data

of pSE2empty vector (25,30 nmol mg total protein21 hour21) from raw data for

each transporter. Values in the figure are means ¡ SD (n56).

doi:10.1371/journal.pone.0115905.s004 (TIF)

S5 Fig. Uptake time course for SbtA7942 and SbtA7001. Cultures were prepared

as described in Materials and Methods. Uptake experiments were done in the

presence of 50 mM NaCl and 50 mM H14CO3
-. Cells were incubated with

H14CO3
- for 0.5, 1, 2 and 4 mins. Net uptake was calculated by subtracting data of

pSE2empty control (0.38,0.55 nmol mg total protein21) from raw data of

SbtA7942 (diamond) and SbtA7001 (triangle). Values in the figure are means ¡

SD (n56).
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doi:10.1371/journal.pone.0115905.s005 (TIF)

S6 Fig. An alignment of the six SbtA forms used in the present study. The

clones from b-cyanobacteria were Synechococcus elongatus sp. PCC7942

(SynPCC7942; freshwater), Synechococcus elongatus sp. PCC7002 (SynPCC7002;

coastal/estuarine) and Synechocystis sp. PCC6803 (SycPCC6803; freshwater). The

clones from a-cyanobacterial transitions strains were from Cyanobium spp.

PCC6307 (CynPCC6307) and PCC7001 (CynPCC7001) and from Synechococcus

WH5701 (SynWH5701). The positions of the membrane helices previously

determined for Synechocystis PCC6803 SbtA are shown in purple. The conserved

epitope region used for raising an antibody is shown in red. Residues are shaded

according the functional categories: hydrophobic (green), positively charged

(red), polar (orange) and aromatic (blue).

doi:10.1371/journal.pone.0115905.s006 (TIF)
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