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Global population growth is projected to outpace plant-

breeding improvements in major crop yields within decades. To

ensure future food security, multiple creative efforts seek to

overcome limitations to crop yield. Perhaps the greatest

limitation to increased crop yield is photosynthetic inefficiency,

particularly in C3 crop plants. Recently, great strides have been

made toward crop improvement by researchers seeking to

introduce the cyanobacterial CO2-concentrating mechanism

(CCM) into plant chloroplasts. This strategy recognises the C3

chloroplast as lacking a CCM, and being a primordial

cyanobacterium at its essence. Hence the collection of solute

transporters, enzymes, and physical structures that make

cyanobacterial CO2-fixation so efficient are viewed as a natural

source of genetic material for C3 chloroplast improvement. Also

we highlight recent outstanding research aimed toward the

goal of introducing a cyanobacterial CCM into C3 chloroplasts

and consider future research directions.
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Introduction
A prime limitation of plant photosynthetic carbon acqui-

sition is the enzyme D-ribulose-1,5-bisphosphate carbox-

ylase/oxygenase (RuBisCO), whose slow kinetics and

poor discrimination between CO2 and O2 as substrates

makes it an ideal target for genetic improvement in crop

plants [1]. In addition, C3 chloroplastic CO2 concentrations

typically fall below the K
CO2
M of RuBisCO, often leaving
www.sciencedirect.com 
photosynthetic carbon acquisition limited by this critical

carbon-fixation step. To overcome RuBisCO’s limitations,

a number of terrestrial plant species have evolved CO2-

concentrating mechanisms (CCMs), including C4 photo-

synthesis and crassulacean-acid metabolism, which elevate

CO2 concentrations near RuBisCO to enhance CO2-fixa-

tion [2]. In aquatic environments, photosynthetic organ-

isms (predominantly microalgae and cyanobacteria) have

evolved highly effective CCMs that rely on a range of

active and facilitated uptake systems for inorganic carbon

(Ci; HCO3
�, CO2) to enhance photosynthetic CO2-fixation

[3]. Most of the world’s major staple crops perform C3

photosynthesis, suggesting improvement of net RuBisCO

carboxylation rates is a way forward to increased yield

potential, urgently needed for future food security [4].

It is expected, based on photosynthetic modelling, that a

C3 chloroplast possessing a cyanobacterial CCM will

provide significant improvements in photosynthetic per-

formance and yields [5��,6]. Toward this goal, herein we

discuss the current progress, engineering requirements

and limitations in current knowledge  of cyanobacterial

CCMs.

Cyanobacterial CCMs include energised bicarbonate

transporters, CO2-uptake complexes [7], and ancillary

and regulatory proteins [8] which elevate the cytoplasmic

Ci pool, primarily as less membrane-permeable bicarbon-

ate ion (Figure 1). Cytoplasmic bicarbonate is transferred

across a selectively permeable protein shell into the car-

boxysome, a RuBisCO micro-compartment [9,10], where it

is dehydrated to CO2 and incorporated into 3-phospho-

glycerate (Figure 1) [9,10]. This arrangement favours cya-

nobacterial RuBisCOs, which have high enzyme fluxes

(high V CO2
) compared with higher plant RuBisCOs,

but at the cost of substrate affinity (high K
CO2
M ) [11].

Elevated CO2 within the carboxysome enables high

kinetic turnover, minimizing photorespiration.

Prior work from our laboratory has outlined a hypothetical

C3 chloroplastic CCM incorporating cyanobacterial com-

ponents [6,12]. A first-order analysis reveals an engineer-

ing trajectory (further outlined in Figure 2):

1. Introduction of active bicarbonate transporters and

potential ancillary systems.

2. Introduction of carboxysomes and carboxysomal

RuBisCO.
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The CCM of cyanobacteria. Protein components discussed in this review are highlighted, whilst those outside the expected chloroplast

engineering strategy are shown in grey. The cyanobacterial CCM utilises three known bicarbonate transporters: BicA (magenta), SbtA (purple), and

the BCT1 complex (an ATP-binding cassette transporter comprising Cmp A, B, C and D subunits). Further, two thylakoid-bound CO2 uptake

complexes recover cytoplasmic CO2: NDH-I3, and NDH-I4. These are supported by at least three ion exchangers which recover the chemical

gradients energising active Ci-uptake: Na+/H+ antiporter NhaS3 (blue); and PxcA and Mnh complexes exporting H+. The potential role of the

companion protein SbtB (light purple) in SbtA activation is indicated. The accumulated bicarbonate pool is utilised within the carboxysome

(yellow), where bicarbonate is dehydrated to CO2 and fixed into organic carbon by RuBisCO in the Calvin–Benson–Bassham cycle (CBB). Low

rate, diffusive movement of CO2 into the cell is indicated on the left of the figure. CO2 uptake complexes also play a role in scavenging of CO2

lost from carboxysomes. Locations of the proteins and structures within the cell are indicated in Figure 2.
3. Genetic deletion of stromal CA and endogenous

RuBisCO.

Mathematical modelling shows that substantial increases

in substrate-saturated CO2 assimilation rate (Asat) and

yield can be achieved (Asat increase up to 60%; 36–60%

yield increase) by incorporation of a cyanobacterial CCM

in C3 chloroplasts [5��]. At minimum, photosynthetic

improvements can be made by incorporation of functional

cyanobacterial bicarbonate transporters in the chloroplast

inner membrane. However, maximum improvements will

only be achieved by incorporation of further components

of a complete CCM (Figures 1 and 2; Table 1) and genetic

deletion of stromal carbonic anhydrase (CA) [5��,6]. The

importance of ancillary systems involved in aiding Ci

uptake by maintenance of electrochemical gradients

(Figure 1) is currently either unknown or unclear [6]
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and will not be discussed further. The bicarbonate trans-

porters, BicA and SbtA (Figure 1), have been suggested as

primary candidates for chloroplast engineering since they

likely function as homomeric complexes, thus eliminat-

ing the need to express and assemble different protein

subunits in correct stoichiometry. In contrast, engineering

of multi-component Ci uptake systems (Figure 1) such as

BCT1, NDH-I3 and NDH-I4 (NADPH dependent, CO2

uptake complexes) will only marginally increase photo-

synthesis [5��], but add the complication of coordinated

expression of both membrane-associated and cytosolic

proteins. While the construction of a fully functional

carboxysome in the chloroplast stroma is equally chal-

lenging, early steps have recently been made [13,14]. We

discuss here some of the recent advances, remaining

questions and constraints toward carboxysome formation

in C3 chloroplasts.
www.sciencedirect.com
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Table 1

Protein components of a-carboxysomes and b-carboxysomes and

RuBisCO ancillary proteins.a

Component Carboxysome type

a b

RuBisCO Form 1A From 1B

RuBisCO chaperones/

activases

acRAF, CbbQ/O,

CbbX

RbcX, Rca

Structural proteins CsoS2 (A/B) CcmM

(long/short),

CcmN

Shell proteins CsoS1A–E CcmK (1–4),

CcmO,

CcmP

Shell vertex proteins CsoS4A/B CcmL

Carbonic anhydrase CsoSCA (CsoS3) CcmM

(N-term),

CcaA

a Location of most RuBisCO ancillary proteins within the carboxysome is

not yet known, although CbbQ and CbbO have recently been identified as

components of the H. neapolitanus carboxysome shell [38].

Figure 2

2

1

3

Current Opinion in Plant Biology

Engineering a C3 chloroplastic CCM. Mathematical models suggest

that the ideal engineering trajectory occurs in three general stages

[5��,6]. (1) Active bicarbonate transporters [BicA (magenta), SbtA

(purple)] from cyanobacteria are introduced into the chloroplast inner

membrane within a C3 plant cell (brown); subsequently, ancillary Na+/

H+ pumps [Na+/H+ antiporter NhaS3 (blue)]. (2) Carboxysomes (yellow)

with their cognate RuBisCO are introduced. (3) Stromal carbonic

anhydrase (CA) enzymes, as well as the endogenous RuBisCO, are

eliminated and carboxysomes and transporters are combined in the

one chloroplast. Genetic removal of the endogenous chloroplastic

RuBisCO LSU gene can be carried out during incorporation of

carboxysomal RuBisCO via recombination [14]. The genetic excision

or down-regulation of stromal CA has little effect on photosynthetic

performance in WT plants [69] and can therefore be carried out at any

time. However, the existence of stromal CA will short-cut a

chloroplastic CCM by dissipating the stromal bicarbonate pool as CO2

[5��] and must at least be a final step in the process before maximal

advantage of the CCM can be achieved. Further steps are likely

required for fine-tuning of the system.
Challenges of expressing functional
bicarbonate transporters in chloroplasts
A milestone toward the generation of a chloroplastic

CCM was the successful expression of the cyanobac-

terial bicarbonate transporter BicA in chloroplasts of

Nicotiana tabacum via plastome transformation [15�].
However, predominant localization of BicA to the

thylakoids, and lack of function, highlights the chal-

lenges in correct targeting and activation of foreign

transporters in chloroplasts. Indeed, BicA expressed

in Escherichia coli [16��] or in Xenopus oocytes (Förster,

B., and Price, G. D., unpublished) is also inactive. It is

therefore paramount to understand the activation

mechanism in order to use BicA effectively in the

chloroplast envelope. While plastome-encoding allevi-

ates the need for organellar targeting peptides, the fact

that most C3 crop plants are recalcitrant to plastid

transformation makes expression from the nucleus a

promising alternative.
www.sciencedirect.com 
To be functional in higher plants, nuclear-encoded cya-

nobacterial bicarbonate transporters BicA and SbtA need

to be: first, efficiently targeted to chloroplasts; second,

inserted in the correct membrane; third, in an orientation

allowing transport of bicarbonate into chloroplasts; and

fourth, active and regulated.

Chloroplast targeting and orientation in the envelope

Chloroplast protein import is well understood, and gener-

ally relies on a cleavable chloroplast transit peptide (cTP)

[17]. Efficient import of foreign proteins is more difficult

and until recently data only existed for soluble proteins, in

which case both a cTP and part of the mature protein are

required (a combination called a transit peptide, TP)

[18,19]. No ‘universal’ TP able to deliver any cargo to

the chloroplast is known, and instead TPs are likely to be

cargo-specific. In fact, a recent study showed that TPs used

for stromal cargos were too short to target large transmem-

brane proteins such as BicA and SbtA, to the inner enve-

lope membrane [20]. However, longer TPs were sufficient

for chloroplast targeting, without the need for extra trans-

membrane domains [20]. In a separate study, BicA and

SbtA were targeted to chloroplasts by fusion to another

transmembrane protein which could be cleaved off post-

import [21].

Chloroplasts contain three membranous compartments:

the outer-envelope and inner-envelope membranes

(OEM and IEM), and the thylakoids. The OEM is a

porous membrane and, to present knowledge, only one of

its proteins contains an identifiable cTP [22]. The IEM is

the selective membrane in which most of the transporters

regulating solute fluxes are located [23,24], and is the

proposed membrane in which BicA and SbtA need to be

localized in order to effect bicarbonate transport [12].
Current Opinion in Plant Biology 2016, 31:1–8
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Overexpression of proteins in the IEM or OEM result in

differently shaped membrane out-foldings (stromules),

suggesting it is possible to identify the membrane con-

taining the protein of interest [25].

The thylakoids are fused at focal points with the IEM, such

that the IEM-thylakoids form a continuous membrane

[26], and protein movement between the two membranes

is not well understood. However, the membrane domain of

proteins with a single trans-membrane-domain (TMD)

contains sufficient information to target it to the IEM or

the thylakoid [27]. The case of foreign proteins with

multiple TMDs such as BicA and SbtA, which have

evolved to be localized in the plasma membrane in cya-

nobacteria [7] is likely to be more complex [20].

BicA and SbtA likely follow the positive-inside rule

governing their orientation in the plasma membrane

[28,29], but it is unknown how foreign proteins insert

into the plastid IEM. Therefore it is critical to assess

protein orientation in vivo. As described recently, a self-

assembling split GFP-fluorophore may be used to unravel

the orientation of transporters in the IEM [30,31,32,33].

Regulation of BicA and SbtA transport activity

Rapid regulation in response to Ci availability and light is

a common feature of all Ci transporters [7]. However, the

underlying post-translational regulatory mechanisms in

cyanobacteria are poorly understood. Insights from het-

erologous expression in E. coli suggest that SbtA may be

directly regulated by a companion protein SbtB [16��]. A

mechanism for SbtA–SbtB interaction has been proposed

based on similarities of an unpublished SbtB crystal

structure from Anabaena (PDB: 3DFE), with cyanobac-

terial PII proteins that regulate nitrogen metabolism [(16,

and references therein)]. By analogy to the regulation of

the E. coli ammonia channel AmtB by its PII protein

counterpart GlnK [34], it is conceivable that small-mole-

cule co-factors may mediate a reversible binding of SbtB

to SbtA. Thus, we view SbtA as being manageable once

expressed in the chloroplast envelope.

Although we presently have no experimental evidence for

SbtA or BicA function in higher plants, it is promising that

several algal bicarbonate transporters localize to equiva-

lent sub-cellular compartments both in Chlamydomonas
and higher plants [35�]. Two of those transporters (LCIA

and HLA3) facilitate bicarbonate uptake into Xenopus
oocytes, albeit exerting no measurable phenotype in
planta, re-iterating the necessity to understand regulation

of transporters and the need for highly sensitive assays for

bicarbonate transporter activity in plant cells.

Carboxysomes: expression and engineering in
C3 chloroplasts — current advances
Carboxysomes are protein mega-complexes containing

the cellular RuBisCO and CA enzymes in model species
Current Opinion in Plant Biology 2016, 31:1–8 
[9,10] (and elsewhere in this issue, [70]). Formation of

these bodies in cyanobacteria and proteobacteria relies

on the stoichiometric expression of as few as eight, or as

many as 13 genes (Figure 3). Two architecturally distinct

types of carboxysomes are evident; a-carboxysomes pos-

sess bacterial RuBisCO form-1A, whereas b-carboxy-

somes encapsulate higher-plant RuBisCO form-1B

[36]. Both types utilise many thousands of homologous

proteins in tessellated arrays forming an icosahedral outer

shell structure [37]. The outer shell is selectively perme-

able, allowing transit of RuBisCO substrates and the

bicarbonate ion, but limited CO2 and O2 diffusion

(Figure 1; Table 1) [38].

Complex requirements for RuBisCO folding and

activation

Additional to the challenge of successful carboxysome

construction in the chloroplast stroma is the expression of

a fully functional, foreign, carboxysomal RuBisCO [11].

Attempts at ectopic expression of RuBisCO proteins have

been hampered by the complex chaperone requirements

of this enzyme [11]. Depending on the species of origin,

numerous RuBisCO chaperones are utilised (Table 1)

[39,40�,41�]. The extent to which these chaperone

requirements can be satisfied by the C3 chloroplast

remains a topic of extensive research, as is the chaperone

requirement of bona fide C3 RuBisCO enzymes [42].

While numerous barriers prevent the effective expression

of even closely related RuBisCO enzymes in C3 chlor-

oplasts, recent advances suggest cognate chaperones are

required [43�]. Further studies have also elaborated the

roles of a-carboxysome-specific RuBisCO chaperones

and activases acRAF, CbbQ-CbbO, and CbbX

(Table 1) [40�,41�,44,45]. On the other hand, b-carbox-

ysomal RuBisCO requires the Rca activase (Table 1) [46],

but not RbcX when co-expressed with RuBisCO in N.
tabacum [14].

Structural and ancillary proteins

Gross differences in structure exist among carboxysomes

(Table 1). Both types utilise a CA enzyme, however

b-carboxysomes may use either of two genes for this

purpose [47]. The main body of RuBisCO enzymes is

arranged differently in a-carboxysomes and b-carboxy-

somes [recently reviewed in depth, 9]. RuBisCO is at-

tached to the shell via CsoS2 proteins in a-carboxysomes

[48,49��], whereas in b-carboxysomes RuBisCO enzymes

are scaffolded to one another, and to CA enzymes, by

CcmM proteins [50,51]; the shell is attached to this body

via another structural protein CcmN [52]. Lin et al. [13]

successfully co-expressed CcmM and RuBisCO from

Synechococcus elongatus PCC 7942 in chloroplasts of N.
tabacum, resulting in apparent macromolecular com-

plexes, in some ways reminiscent of structures upon

which b-carboxysomal models are based [53,54,55�].
However, similar to transgenic plants expressing form

II RuBisCO in chloroplasts [56], those generated by Lin
www.sciencedirect.com
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Figure 3
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Genetic operons and associated genes encoding model carboxysomes, and carboxysomes suited to expression in chloroplastic CCMs. In all

panels: green arrows are the RuBisCO large and small subunit genes; purple are known or putative RuBisCO activases and chaperones; magenta

are carboxysomal carbonic anhydrases (CA); blue are outer shell proteins including vertex proteins; and yellow are structural proteins (Table 1). (a)

a-Carboxysomes from the gammaproteobacterium Halothiobacillus neapolitanus C2 are the best understood of the a-type, and utilise the acRAF

chaperone r [44], and CbbQ/O activase [41�]. (b) A comparatively simple a-carboxysome operon from Prochlorococcus marinus, utilising the

acRAF (r) chaperone only, although its absolute requirement is unknown. Other cyanobacterial a-carboxysomes appears to also utilise a CbbX

activase [58]. (c) Genetic components encoding the best understood b-carboxysome from Synechococcus elongatus PCC 7942, utilising the

putative chaperone RbcX (X), and the additional carboxysomal CA CcaA. D. A comparatively simple b-carboxysome operon from Gloeobacter

violaceus PCC 7421, utilising the RuBisCO activase Rca, and the CcmM protein both as a structural component and its N-terminal CA [47].
et al. [13] could not grow without CO2 supplementation,

highlighting the important fact that we do not expect

cyanobacterial RuBisCO alone, or in the carboxysome, to

operate effectively in the absence of bicarbonate trans-

port or stromal CA removal [5��,6].

Complex carboxysome genetics

Carboxysomes with the smallest genetic footprint are the

most appealing for C3 chloroplast transformation

(Figure 3). With lower genetic load, and minimal poten-

tial for recombination between homologous shell genes,

we expect that simple carboxysomes might be better able

to self-assemble in chloroplasts. While a-carboxysomes

and b-carboxysomes appear to assemble from their com-

ponents with remarkable ease, complex expression of the

major organising proteins of both types is troubling. Two

forms of CcmM are present in b-carboxysomes, with a

short form arising from an internal ribosome-entry site

within ccmM [50]. Two isoforms of the a-carboxysomal

protein CsoS2 arise from the gene via translational frame-

shifting in many organisms [49��]. Both forms of CcmM

are essential to the functioning of the b-carboxysome

[54], hence it must be ascertained whether these can be

accurately produced in C3 chloroplasts. On the other

hand, it appears that only the long-form of CsoS2 is truly

essential in a-carboxysomes [49��].

To achieve similar goals, Gonzalez-Esquer et al. [57��]
generated carboxysome-like bodies from a single
www.sciencedirect.com 
carboxysomal fusion-protein, CcmC (containing shell,

CA, and RuBisCO-binding domains). Further work is

required to align the physiology with the observed

structure, but we recognise this innovative work to

have significantly advanced the field.

Ideal carboxysomes from genomic data

Candidate operons encoding the minimal gene require-

ments for both a-carboxysomes and b-carboxysomes

formation exist (Figure 3): Gloeobacter violaceus PCC

7421 has the smallest known b-carboxysome gene con-

tent, encoding just five shell proteins, and utilising CcmM

as its CA enzyme [47]. Candidate a-carboxysome operons

are evident in the high-light adapted Prochlorococcus mar-
inus clade [58], possessing the simplest known a-carboxy-

some operons, and also likely to use a single form of

CsoS2 [49��,58]. Typically, we recognise a-carboxysomes

as most desirable in terms of gene content, self-assembly

in transgenic hosts, and simplicity of gene expression.

Because C3 carboxysome models are sensitive to

RuBisCO kinetics [5��], we must take into account the

varied kinetics observed in extant RuBisCO enzymes.

Essentially, a carboxysomal RuBisCO should operate

near its maximum rate of catalysis. Therefore, b-carbox-

ysomal RuBisCO enzymes, being catalytically superior to

a-carboxysomal homologues [59,60,61,62�,63,64,65]

might be preferred. Interestingly, the Cyanobium genus

possess a high affinity CCM and fast a-carboxysomal
Current Opinion in Plant Biology 2016, 31:1–8
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RuBisCO [62�,66], overcoming this shortfall, hence we

view Cyanobium carboxysomes as bearing many desirable

traits for chloroplast engineering. Nonetheless, a dearth of

kinetic data for RuBisCOs from a-carboxysomes suggests

that an ideal a-carboxysomal RuBisCO candidate for a

chloroplastic CCM is yet to be identified.

Conclusions
Recent advances toward a chloroplastic CCM

[13,14,15�,35�] are vital first steps, but highlight short-

comings in achieving this goal. These developments

emphasise the need to examine targeting and regulation

(in the case of Ci transporters), and issues of protein

folding and activity (in the case of carboxysomes). In-

deed, our efforts focus on engineering C3 chloroplasts

with simple cyanobacterial systems, such as the single-

subunit Ci transporters BicA and SbtA in the hope that

regulation is achievable. This extends to genetically

simple carboxysomes, which are apparent from both types

(Figure 3). The difficult nature of b-carboxysome purifi-

cation [67] makes them problematic in confirming their

functional presence in transgenic plants. Whereas, a-

carboxysomes are readily expressed in, and purified from,

tractable bacterial and cyanobacterial systems [48,58,68].

Despite the catalytic superiority of b-carboxysomal

RuBisCOs, we identify a lack of data for a-carboxysomal

RuBisCOs and work in this field is needed. In what is a

rapidly developing field of research, our expectations for

progress toward a chloroplastic CCM utilising cyanobac-

terial components are optimistic.
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