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Sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37)
catalyses the dephosphorylation of sedoheptulose-1,7-bisphos-
phate in the regenerative phase of the Calvin cycle. Antisense
plants with reduced levels of SBPase have decreased photosyn-
thetic capacity and altered carbohydrate status, leading to
modifications in growth and development. The catalytic activ-
ity of SBPase is regulated by light via the ferredoxin/thiore-
doxin system. Recently, the amino acids within the SBPase

protein involved in this regulatory mechanism have been iden-
tified and a deregulated, permanently active form of the
enzyme has been produced using site-directed mutagenesis.
This paper explores how transgenic Nicotiana tabacum cv.
Samsun plants, containing the deregulated form of the
SBPase enzyme, may lead to a better understanding of the in
vivo role of light activation of this important Calvin cycle
enzyme.

Introduction

Sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37) is
unique to the C3 photosynthetic carbon reduction cycle
(Calvin cycle), where it catalyses the dephosphorylation of
sedoheptulose-1,7-bisphosphate. This reaction takes place in
the regenerative phase of the C3 cycle, where the CO,
acceptor molecule, ribulose-1,5-bisphosphate, is regenerated
from triose phosphates through a series of sugar condensa-
tion and carbon rearrangement reactions (Woodrow and
Berry 1988, Geiger and Servaites 1995).

The SBPase gene has been cloned from a number of
different plant species, where it is located in the nuclear
genome (Raines et al. 1992, Willingham et al. 1994, Hahn et
al. 1998). The Arabidopsis SBPase gene is present as a single
copy sequence as is the case in Chlamydomonas (Willingham
et al. 1994, Hahn et al. 1998). However, in hexaploid wheat
the organisation is more complex, perhaps as a result of
gene duplication (Devos et al. 1992). SBPase gene expres-
sion is regulated by light, development and levels of hexose
sugars (Willingham et al. 1994, Jones et al. 1996). In dark
grown wheat and Arabidopsis seedlings the level of SBPase
mRNA is very low but on transfer to light increases by at
least 20-fold (Willingham et al. 1994). In studies using the
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primary wheat leaf, Calvin cycle enzyme mRNA levels,
including SBPase, were very low in cells containing imma-
ture plastids, but increased significantly (5-20-fold) in the
mid-section where the cells are fully expanded and the
chloroplasts mature (Raines et al. 1991, Willingham et al.
1994). The regulation of SBPase gene expression is likely to
be largely at the level of transcription, as is the case for the
nuclear encoded Rubisco small subunit genes (Dean et al.
1989). The wheat and Arabidopsis SBPase genes both con-
tain a number of DNA sequence motifs which have been
identified as having a role in the transcriptional regulation
of other photosynthetic genes (Miles et al. 1993, Willingham
et al. 1994). The upstream sequence of the Chlamydomonas
SBPase gene also contains elements important for directing
light-regulated expression (Hahn et al. 1998). However, as
yet only one putative transcription factor, WF-1, present in
wheat leaf nuclei, has been identified as interacting with an
SBPase gene upstream sequence (Miles et al. 1993).

The activity of the SBPase enzyme is regulated by light.
On transfer from darkness to light, the catalytic activity of
SBPase increases as a result of light-modulated activation by
thioredoxin f (Breazeale et al. 1978, Wirtz et al. 1982).
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Further regulation of SBPase activity results from changes
in stromal Mg?* levels and pH which also occur as a result
of illumination; indeed, the substrate for SBPase is sed-1,7-
bP-Mg?* (Portis et al. 1977, Purczeld et al. 1978, Nishizawa
and Buchanan 1981, Woodrow and Walker 1982, Woodrow
et al. 1984, Cadet and Meunier 1988). An additional level of
regulation may result from the association of SBPase into
complexes with other Calvin cycle enzymes within the
stroma, possibly improving the efficiency of the cycle by
facilitating the channelling of intermediates between en-
zymes (Suss et al. 1993). The highly regulated catalytic
activity of SBPase, together with data from modelling stud-
ies (Petterson and Ryde-Petterson 1989), has suggested that
this enzyme may play an important role in the control of
carbon flux through the Calvin cycle.

This review focuses on two main areas of SBPase research
in which significant advances have recently been made.
Firstly, analysis of the structure of this enzyme leading to
the identification of the cysteine residues involved in redox
regulation and secondly, the use of transgenic technology to
manipulate the levels of SBPase activity, revealing the im-
portance of this enzyme in the control of photosynthetic
carbon fixation.

Location of the regulatory cysteines in SBPase

In common with several Calvin cycle enzymes SBPase is
virtually inactive in the dark but activity increases by more
than 10-fold within minutes of illumination (Laing et al.
1981, Wirtz et al. 1982). This light activation of SBPase is
mediated through reducing power produced by the photo-
synthetic light reactions. Reducing power is transferred from
ferredoxin to thioredoxin f in a reaction catalysed by the
enzyme ferredoxin/thioredoxin reductase. Thioredoxin then
binds to the inactive SBPase enzyme in a stable complex and
reduces the regulatory disulphide bond (Geck et al. 1996,

Jaramillo et al. 1997). This activation mechanism involves
the formation of protein—protein mixed disulphide bonds
followed by the release of the reduced SBPase protein and
the formation of oxidised thioredoxin (Brandes et al. 1996).
Reduction of the disulphide bond in the SBPase protein
changes the conformation of the active site, resulting in
activation of the enzyme.

As a first step towards the identification of the cysteine
residues responsible for light activation of SBPase, a com-
parison was made between the derived amino sequences for
SBPases from wheat, spinach, Arabidospsis and Chlamy-
domonas. The initial hypothesis was that the position of the
cysteines involved in thiol regulation would be conserved in
all species and from the alignment (Fig. 1) it can be seen
that four cysteine (Cys) residues, at positions 52, 57, 86 and
90, are conserved in all SBPases. In addition, Cys10 and
Cys35 are conserved in all the higher plant sequences. In
order to identify the specific cysteines involved in thiol
regulation, site-directed mutagenesis was used to individu-
ally change each of these 6 cysteine codons to serine codons
in a wheat SBPase cDNA clone (Dunford et al. 1998a,b).
When the resulting mutant proteins were expressed in E. coli
and their activity assayed in the presence or absence of
reductant, only the mutant enzymes with Cys52 and Cys57
replaced by serine displayed redox insensitive activity (Table
1). These data suggested that amino acids, Cys52 and Cys57,
were the regulatory cysteines in SBPase. Although amino
acid sequence comparisons show that SBPase is closely
related to FBPase (Raines et al. 1992, Martin et al. 1996),
information from mutagenesis studies has revealed that the
regulatory cysteine residues in these two proteins are located
in different positions (Jacquot et al. 1995, 1997b). The
feature that they have in common is that the redox active
cysteines are distant from the catalytic site. This is in
contrast to PRKase, where the cysteines involved in thiol
regulation are some 39 amino acids apart and are located

15 30 45 60 75 90
AtSBP SNGASTVTKCEIGQS LEEFLAQATPDKGLR TLLMCMGEALRTIAF KVRTASCGGTACVNS FGDEQLAVDMLADKL LFEALQYSHVCKYAC
S01SBP --NSSLVTKCELGDS LEEFLAKATTDKGLI RLMMCMGEALRTIGF KVRTASCGGTQCVNT FGDEQLAIDVLADKL LFEALNYSHFCKYAC
TaSBP ASRAALTTRCAIGDS LEEFLTKATPDKNLI RLLICMGEAMRTIAF KVRTASCGGTACVNS FGDEQLAVDMLADKL LFEALEYSHVCKYAC
Ch1SBP SRRTAVLTQAKIGDS LAEFLVEATPDPKLR HVMMSMAEATRTIAH KVRTASCAGTACVNS FGDEQLAVDMVADKL LFEALKYSHVSKLAC
* * * * *
105 120 135 150 165 180
AtSBP SEEVPELODMGGPVE GGFSVAFDPLDGSSI VDTNFTVGTIFGVWP GDKLTGITGGDQVAA AMGIYGPRTTYVLAV KGFPGTHEFLLLDEG
SolSBP SEELPELQDMGGPVD GGFSVAFDPLDGSSI VDTNFSVGTIFGVWP GDKLTGVTGRDQVAA AMGIYGPRTTYVLAL KDYPGTHEFLLLDEG
TaSBP SEEVPELQDMGGPVE GGFSVAFDPLDGSSI VDTNFTVGTIFGVWP GDKLTGVTGGDQVAA AMGIYGPRTTFVVAL KDCPGTHEFLLLDEG
ChlSBP SEEVPEPVDMGG--- EGFCVAFDPLDGSSS SDTNFAVGTIFGVWP GDKLTNITGREQVAA GMGIYGPRTVFCIAL KDAPGCHEFLLMDDG
195 210 225 240 255 270
AtSBP KWQHVKETTEIAEGK MFSPGNLRATFDNSE YSKLIDYYVKEKYTL RYTGGMVPDVNQIIV KEKGIFTNVTSPTAK AKLRLLFEVAPLGLL
SolSBP KWQHVKETTEINEGK LFCPGNLRATSDNAD YAKLIQYYIKEKYTL RYTGGMVPDVNQIIV KEKGIFTNVISPTAK AKLRLLFEVAPLGFL
TaSBP KWQHVKDTTSIGEGK MFSPGNLRATFDNPD YDKLVNYYVKEKYTL RYTGGMVPDVNQIIV KEKGIFTNVTSPTAK AKLRLLFEVAPLGFL
Chl1SBP KWMHVKETTHIGEGK MFAPGNLRATFDNPA YERLINFYLGEKYTL RYTGGIVPDLFQIIV KEKGVFTNLTSPTTK AKLRILFEVAPLALL
285 300 315 330
AtSBP IENAGGFSS-DGHK- SVLDKTIINLDDRTQ VAYGSKNEIIRFEET LYGTSRLKN-VPIGV TA
SolSBP IEKAGGHSS-EGTK- SVLDIEVKNLDDRTQ VAYGSLNEIIRFEKT LYGSSRLEEPVPVGA AA
TaSBP IEKAGGHSS-DGKQ- SVLDKVISVLDERTQ VAYGSKNEIIRFEET LYGSSRLAASATVGA TA
Ch1SBP IEKAGGASSCDGKAV SALDIPILVCDQRTQ ICYGSIGEVRRFEEY MYGTSPRFSEKVVA

Fig. 1. Alignment of SBPase amino acid sequences from Arabidopsis (Arabidopsis thaliana, AtSBP; Willingham et al. 1994), spinach,
(Spinacia oleracea, SolSBP; Martin et al. 1996) wheat (Triticum aestivum, TaSBP; Raines et al. 1992) and Chlamydomonas reinhardtii
(ChISBP, Hahn et al. 1998). Amino acids are numbered according to Dunford et al. (1998a,b). Cysteines conserved in all of the higher plant
sequences are indicated by asterisks.
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Table 1. Identification of the redox active cysteines in wheat SBPase. The 6 conserved cysteine residues identified in Fig. 1 were individually
changed to serine residues and the activities of the oxidised and reduced forms of the enzymes determined by spectrophotometric detection

of Pi released from SBP (Dunford et al. 1998b)

Wild-type C10

C35 C52 C57 C86 C90

Ratio oxid/red SBPase activity 5.18 8.33

5.00 1.07 1.00 2.33 9.87

within the active site region of this protein. This work
suggests that in each case thiol regulation has evolved
independently in response to the appearance of oxygenic
photosynthesis (Buchanan 1991; reviewed in Jacquot et al.
1997a).

The similarity between the primary amino acid sequences
of SBPase and FBPase has enabled modelling studies to be
carried out, based on the extensive crystallographic data
available on the pig FBPase structure (Ke et al. 1991). This
has indicated that the regulatory cysteines, Cys52 and
Cys57, may be located in a flexible loop, near to the
junction between the two subunits of the homodimer. The
next challenge in this area of SBPase research will be to use
crystallographic techniques to resolve the 3D structure of
SBPase and to reveal the structural details of the allosteric
changes occurring during redox regulation, as has been done
for chloroplastic FBPase (Chiadmi et al. 1999). An under-
standing of the molecular interactions between SBPase and
thioredoxin during the light activation process should de-
velop from such studies.

Transgenic plants with altered SBPase activity

In recent years, studies in plant metabolic pathways, includ-
ing the C3 cycle, have made extensive use of transgenic
plants to investigate the importance of individual enzymes
directly (Stitt and Sonnewald 1995). Genetic manipulation
was used to alter SBPase levels in transgenic plants and the
effect on photosynthetic carbon fixation was measured.
Metabolic control analysis was then applied to quantify the
contribution that SBPase makes to the control of photosyn-
thetic carbon fixation. For linear metabolic pathways the
flux control coefficient can vary from 0 for an enzyme that
makes no contribution to control to 1 for an enzyme that
exerts total control (Kacser and Porteous 1987). Using an
antisense construct, SBPase expression was lowered in trans-
genic tobacco plants, producing recombinants with a range
of SBPase protein and activity levels (Harrison et al. 1998).
To determine the relationship between SBPase activity and
photosynthetic carbon fixation, the rate of photosynthesis
was measured under light-saturating conditions, and either
ambient (Ag,,) or saturating CO, (A,,.,), in antisense plants
with a range of SBPase levels (Fig. 2). The amount of
control exerted by SBPase on photosynthetic carbon fixa-
tion, the flux control coefficient, was calculated from the
slopes of logarithmic plots of A, and A, ,, against enzyme
activity and values of 0.31 and 0.54 obtained, respectively
(Fell 1997). These data show that SBPase exerts greater
control over carbon flux when photosynthesis is measured in
saturating CO,. These results are in keeping with data from
the analysis of transgenic plants with reduced levels of
Rubisco which show that the control of flux does not reside
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solely with Rubisco but is shared with other enzymes in the
cycle, particularly when photosynthesis is measured in ambi-
ent conditions. In contrast, Rubisco has almost total control
over the rate of carbon fixation in conditions of high light
and high temperature, when the oxygenation reaction is
favoured and the rate of photorespiration is high (Stitt and
Schulze 1994). The data available from the analysis of
transgenic plants with reduced levels of individual Calvin
cycle enzymes have revealed that the control of carbon
fixation is shared between Rubisco, SBPase and aldolase
(Hudson et al. 1992, Stitt and Schulze 1994, Harrison et al.
1998, Haake et al. 1998, 1999). In addition, these results
have shown very clearly that the distribution of control
between these enzymes is not constant and can vary, de-
pending on environmental conditions. Interestingly, several
highly regulated enzymes in the cycle, glyceraldehyde-3-
phosphate  dehydrogenase, fructose-1,6-bisphosphatase,
phosphoribulokinase, were shown to make little contribu-
tion to the control of photosynthetic carbon flux, under the
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Fig. 2. The response of photosynthetic carbon assimilation to re-
ductions in SBPase activity. Photosynthesis was measured under
light saturating (1000 umol m ~2 s~ !) conditions in ambient CO,
(350 ppm; open circles) and saturating CO, (closed circles) in two
consecutive leaves (leaves 7 and 8) on reaching full expansion, using
a portable open gas exchange system (CIRAS-1, PP-Systems,
Hitchin, UK). Plants were grown in the greenhouse, with light levels
in excess of 750 umol m —2 s ~ ! and temperatures of between 25 and
30°C. Data points are the mean + SE (n =5 for WT plants, for the
transgenic antisense plants two duplicate measurements were made
from consecutive leaves). SBPase activity was determined in samples
from the same leaves used for photosynthesis measurements, imme-
diately frozen in liquid nitrogen and assayed according to Harrison
et al. (1998).
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Fig. 3. Carbohydrate levels in tobacco plants with reduced SBPase
activity. Samples for carbohydrate analysis were harvested at the
end of the light period from fully expanded leaves (leaf 8) from a
second set of plants grown as for photosynthesis analysis (Fig. 2)
and frozen immediately in liquid nitrogen. Glucose, fructose and
sucrose levels were determined using an enzyme-based protocol
(Stitt et al. 1989); starch was measured in the ethanol-insoluble
pellet (Stitt et al. 1978). Data points for the WT plants (filled
symbols) are the mean + SE (n = 4), and for the transgenic antisense
plants (open symbols) are the mean of triplicate measurements of
single extracts from individual leaves on each plant.

conditions in which they were analysed (KoBmann et al.
1994, Paul et al. 1995, Price et al. 1995). However, the
predictions for the control exerted by chloroplastic FBPase
on carbon fixation may have been underestimated because
the antisense plants were grown in low light conditions.
SBPase is positioned at the branch point in the cycle
where intermediates are either channelled towards regenera-
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tion of the CO, acceptor or are exported from the cycle for
carbohydrate biosynthesis. To address the question of
whether reducing the level of SBPase perturbs the balance of
carbon flux to the starch and sucrose biosynthetic pathways,
carbohydrate levels were measured in the fully expanded
source leaves of SBPase antisense plants. Plants with moder-
ate reductions in SBPase activity had no significant reduc-
tion in glucose, fructose or sucrose levels (Fig. 3). In the
plants with more severe reductions in SBPase activity, su-
crose levels were maintained close to that of wild-type (WT)
plants. In contrast, the reductions in starch content were
significant in these plants. These results show that plants
with reduced SBPase activity maintain the flux of carbon to
sucrose at the expense of starch biosynthesis. This change in
carbon partitioning has been observed in all of the Calvin
cycle antisense transgenic plants, suggesting that it is a
general response to reduced photosynthetic carbon flux
(KoBmann et al. 1994, Stitt and Schulze 1994, Paul et al.
1995, Price et al. 1995, Haake et al. 1998, 1999, Harrison et
al. 1998). What is interesting about the SBPase antisense
plants is that starch levels decreased linearly, in response to
reductions in SBPase activity (Fig. 3), to the extent that in
some of the antisense SBPase plants, starch was barely
detectable by iodine staining, regardless of developmental
stage (Fig. 4).

Investigating light activation of SBPase in vivo

An important question remaining is the role of light activa-
tion of individual enzymes, such as SBPase, in controlling
the flux of carbon through the Calvin cycle. Thiol-mediated
light/dark regulation of Calvin cycle enzyme activity may
act, in part, as a simple on/off switch to prevent futile
cycling of Calvin cycle intermediates in the dark, using ATP
in the process and reducing the availability of erythrose-4-

SBPase

-0 0@
.00

16%
Young fully  Mature fully Post-

Young
expanding expanded expanded mature
Leaf age

Fig. 4. Starch content of leaves at different developmental stages
harvested from greenhouse-grown (as for photosynthesis; Fig. 2)
WT and two SBPase antisense plants at the end of the light period.
The SBPase activity (% WT) of a newly fully expanded leaf from
the plant is indicated. Starch was visualized by iodine staining.
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phosphate for the shikimate pathway. In addition, thiol
modulation of the Calvin cycle may regulate the photo-
synthetic flux of carbon in response to rapid short-term
alterations in the light environment, such as shading and
sunflecks (Buchanan 1980, Scheibe 1991, Jacquot et al.
1997a). The availability of fully active deregulated mutants
of SBPase (Dunford et al. 1998b), produced using site
directed mutagenesis, will enable this question to be ad-
dressed in vivo. Transgenic plants, expressing this fully
active mutant form of the enzyme, are being produced
and will be used to investigate the physiological conse-
quences of deregulation of SBPase activity. This use of
transgenic technology is one approach likely to further
our understanding of the role of SBPase in Calvin cycle
metabolism.
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