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Abstract

The lack of efficient means to accurately infer photosynthetic traits constrains under-

standing global land carbon fluxes and improving photosynthetic pathways to

increase crop yield. Here, we investigated whether a hyperspectral imaging camera

mounted on a mobile platform could provide the capability to help resolve these chal-

lenges, focusing on three main approaches, that is, reflectance spectra-, spectral

indices-, and numerical model inversions-based partial least square regression (PLSR)

to estimate photosynthetic traits from canopy hyperspectral reflectance for

11 tobacco cultivars. Results showed that PLSR with inputs of reflectance spectra or

spectral indices yielded an R2 of ~0.8 for predicting Vcmax and Jmax, higher than an R2

of ~0.6 provided by PLSR of numerical inversions. Compared with PLSR of reflec-

tance spectra, PLSR with spectral indices exhibited a better performance for

predicting Vcmax (R
2 = 0.84 ± 0.02, RMSE = 33.8 ± 2.2 μmol m−2 s−1) while a similar

performance for Jmax (R2 = 0.80 ± 0.03, RMSE = 22.6 ± 1.6 μmol m−2 s−1). Further

analysis on spectral resampling revealed that Vcmax and Jmax could be predicted with

~10 spectral bands at a spectral resolution of less than 14.7 nm. These results have

important implications for improving photosynthetic pathways and mapping of pho-

tosynthesis across scales.

K E YWORD S

earth system models, global carbon cycles, high-throughput mapping, hyperspectral imaging,

machine learning, photosynthesis, plant breeding

1 | INTRODUCTION

Photosynthetic traits of vegetation canopies are important parameters

of process-based Earth system models to understand global carbon

cycles (Croft et al., 2017; Rogers, 2014; Schaefer et al., 2012).

However, the lack of spatially and temporally continuous information

on photosynthetic traits for these Earth system models results in a

large uncertainty to account for carbon sinks, sources, and exchange

between the atmosphere and the terrestrial biosphere (Rogers, 2014).

In addition, accurate characterization of photosynthetic rates holds

crucial merits to redesign photosynthesis pathways to improve crop

yield (Long & Ort, 2010; Ort et al., 2015; Ray et al., 2012; TilmanPeng Fu and Katherine Meacham-Hensold should be considered joint first authors.
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et al., 2011). At present, improving photosynthesis remains a source

of untapped potential because photosynthesis is far from its biological

limits (Long et al., 2006; Zhu et al., 2008). The selection of new culti-

vars requires linkages of genotypes to phenotypes in a given environ-

ment, yet it has not achieved in a high-throughput manner, becoming

one of the major bottlenecks in plant breeding (Cabrera-Bosquet

et al., 2012; Furbank & Tester, 2011). To this end, technical advances

in high-throughput characterization of photosynthetic traits are highly

needed as part of solutions to the global food security problem and

are critical for a deep understanding of global environmental change.

The maximum potential for photosynthesis in C3 crops is largely

determined by the maximum rate of carboxylation (Vcmax) and the

maximum rate of electron transport (Jmax; Long & Bernacchi, 2003).

The two variables, together with a widely used biochemical model

(Farquhar et al., 1980), can be used to understand crop photosyn-

thetic performance at leaf to ecosystem levels (Thum et al., 2007; van

der Tol et al., 2009; Zhang et al., 2014). Traditionally, Vcmax and Jmax

are measured in vivo through gas exchange systems (e.g., LI-6800

Portable Photosynthesis System), which is costly and time-consuming.

Recently, studies have shown that reflectance spectra measured by a

high-spectral-resolution spectroradiometer can capture Vcmax and Jmax

variations across species and temperature regimes (Ainsworth et al.,

2014; Heckmann et al., 2017; Serbin et al., 2012; Serbin et al., 2015;

Silva-Perez et al., 2018). Despite success of leaf-level estimations of

photosynthetic capacities using point-based spectral analysis, few

studies used hyperspectral imaging (HSI) technique for high-

throughput estimations of photosynthesis beyond leaf level (Serbin

et al., 2015). In addition to provide a large number of samples (orders

of magnitude more pixels than a point-based sensor), HSI may reveal

significant variability in photosynthetic traits of interest across a

leaf, within a plant, from plant to plants, among genetically distinct

lines, or/and over large geographic areas. Despite these advantages

of HSI, significant challenges in canopy-scale analysis exist. First, the

growing availability of hyperspectral measurements from on-site,

close-range, and remote platforms results in accumulation of hyper-

spectral data in both spatial and temporal domains. The collection of

sensor-based photosynthetic measurements already shifted the

research focus from data procurement to data mining of abundant

spectral information (Araus & Cairns, 2014). However, data mining

of hyperspectral data is limited by the number of ground-truth pho-

tosynthetic measurements (in particular, the number of samples is

less than the dimension of hyperspectral data). Second, spectral

reflectance captured by a hyperspectral sensor at the canopy level is

more complex and composited by multisource variability, such as

those associated with plant geometry and architecture, leaf scatter-

ing properties, and background soil (Jay et al., 2017; Mohd Asaari

et al., 2018). Thus, spurious spectral variations are introduced in the

recorded signals, blurring spectral signatures associated with target

photosynthetic traits.

To overcome these issues, numerous machine learning algorithms

have been proposed to infer photosynthetic traits from the unique

profile of reflectance values in the visible (400–700 nm), near-infrared

(700–1,200 nm), and shortwave infrared regions (1200–2,500 nm;

Heckmann et al., 2017; Serbin et al., 2012; Serbin et al., 2015;

Yendrek et al., 2017). These spectral regions are generally associated

with leaf properties. For example, the reflectance spectrum in the visi-

ble region is mainly dominated by light absorption of leaf pigments

(Huete, 2004), whereas reflectance in the shortwave region is related

to water absorption and dry matter (Ceccato et al., 2001;

Jacquemoud & Baret, 1990). Given these reflectance-leaf characteris-

tics associations, machine learning algorithms such as partial least

square regression (PLSR; Geladi & Kowalski, 1986; Wold et al., 2001)

and artificial neural network regression (Specht, 1991) are widely used

for analysing hyperspectral data because of their ability to deal with

irrelevant spectral bands and band collinearity, also known as the

curse of dimensionality of data (Thenkabail et al., 2013). The under-

standing of the physiological mechanism for correlating reflectance

spectra with photosynthetic variables, however, remained unsolved

using complex machine learning algorithms (Fu et al., 2019). Alterna-

tively, vegetation indices (VIs) such as normalized difference VI, pho-

tochemical reflectance index, and chlorophyll index have also been

used to reveal photosynthetic productivity (Ainsworth et al., 2014;

Drolet et al., 2005; DuBois et al., 2018; Gamon et al., 1992; Muraoka

et al., 2013). However, the potential of these VIs and their best band

combinations have seldomly been explored to map photosynthesis at

the canopy level.

Inversion of radiative transfer models (RTMs), which allows for

the simulation of reflectance at arbitrary viewing and illumination

angles (Jacquemoud & Baret, 1990; Roosjen et al., 2018; Verhoef,

1984), appears as a promising approach to infer photosynthetic

traits from hyperspectral reflectance among different cultivars.

RTMs such as PROSPECT (Jacquemoud & Baret, 1990) and PRO-

SAIL (Jacquemoud et al., 2009) have been used to characterize

structural and biochemical parameters, for example, leaf area index

(LAI), chlorophyll content, and dry matter content (Clevers &

Kooistra, 2012; Darvishzadeh et al., 2008; Duan et al., 2014; Si

et al., 2012). Jay et al. (2017) showed that the PROSAIL model,

evaluated over 14 sugar beet cultivars, could well estimate LAI and

chlorophyll content with root mean square error (RMSE) ≤10%.

Given the close relationship between leaf characteristics (e.g., leaf

pigments, structure, water, and dry mass content) and photosyn-

thetic traits (Ceccato et al., 2001; Jacquemoud & Baret, 1990;

Lobato et al., 2010), the reduction of hyperspectral reflectance

into several meaningful biophysical parameters through RTMs may

thus help identify subtle differences in photosynthetic traits

among different cultivars.

In this study, three different approaches using PLSR with inputs

of reflectance spectra, spectral indices, and RTM-derived crop traits,

respectively, were synthesized and compared relative with their ability

to reveal photosynthetic differences among crop cultivars. Data analy-

sis was based on millimetre hyperspectral imagery collected from a

ground-based phenotyping platform. Further analysis was also per-

formed to evaluate the predictive performance of PLSR with reflec-

tance spectra as inputs across a series of spectral resolutions to

understand whether sensors with multispectral bands are suitable for

estimating photosynthetic rates.
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2 | MATERIALS AND METHODS

2.1 | Experimental design

Eleven tobacco cultivars (referred to as 1–11) including both wild and

genetically modified lines with large differences in photosynthetic

traits (Figure 1) were used to assess performances of the three

approaches to estimate photosynthetic traits. These genetically modi-

fied tobacco cultivars may show a Vcmax (Jmax) value larger than

300 μmol m−2 s−1, for example, due to increased carbon reduction

enzymes (increase in the electron transport metabolite pools). Further

details of these 11 cultivars can be found in Meacham-Hensold

et al. (2019).

These tobacco cultivars were first planted in greenhouse condi-

tions for germination and then transplanted at the four-leaf stage to

the University of Illinois Energy Farm Facility (40.063� N, 88.207� W,

further details about the farm are available at http://energyfarm.

illinois.edu/index.html). Two weeks prior to transplanting, the field site

was fertilized to 275 lbs./acre (~150 ppm) ESN Smart Nitrogen. Field

experiments were conducted to collect hyperspectral images and leaf

gas exchange during the 2017 and 2018 growing seasons (June–

August). Cultivars were planted in replicated plots (n = 4), and each

plant was arranged in a 6 × 6 grid (36 plants per plot) with 0.38-m

spacing between plantings. Irrigation was applied as needed to avoid

water scarcity. To increase the representativeness of the collected

datasets, leaf gas exchange and hyperspectral reflectance measure-

ments (data pairs) were made at various dates (June 22 and 26–27,

July 6–7, 12, and 31, and August 18 in 2017 and July 24–25 in 2018)

to represent a range of phenological stages. In this study, a total of

48 data pairs were collected for Vcmax and 39 data pairs for Jmax at the

plot level. The fewer number of measurements for Vcmax than that for

Jmax resulted from one of the genetically modified tobacco cultivars

not being electron transport limited under any conditions (removed

from analysis as suggested in Fu et al. 2019).

2.2 | Collection of hyperspectral imagery

A ground-based high-throughput phenotyping platform was fabri-

cated to carry a series of sensors for collecting hyperspectral mea-

surements (Figure 1). Because the focus of this study was mainly on

tobacco plants in agricultural fields, the manually operated platform

was adequate to provide spectral measurements over the whole study

area within a few hours (completed within the time window between

11 a.m. and 2:30 p.m. local time). A Resonon PIKA II VNIR HSI camera

was installed on the platform to collect hyperspectral images for each

plot. The camera recorded spectral radiation from 400 to 900 nm in

2.1-nm contiguous bands (240 spectral bands in total) with a push-

broom design. Images were collected at a height of 1.6 m from bare

soil through a manual control system. Each scan consisted of 640 spa-

tial channels along the row with a sampling distance of 0.1 mm (nadir

view). A 99% reflective white panel (Spectralon, Labsphere Inc., North

Dutton, NH, USA) was placed horizontally above canopy and was also

scanned together with tobacco plants in the collected hyperspectral

images. Exposure time was carefully set to avoid possible sensor satu-

ration. For each plot, image acquisition and storage were completed in

less than a minute.

2.3 | Leaf gas exchange and chlorophyll
measurements

Photosynthetic variables (Vcmax and Jmax) were derived from leaf gas

exchange measurements provided by a portable infrared gas

F IGURE 1 A ground-based high-throughput phenotyping platform (a) for collecting hyperspectral images and the value range for
photosynthetic variables Vcmax and Jmax (b). Measurements shown in panel (b) were made on June 22 and 26–27, July 6–7, 12, and 31, and
August 18 in 2017 and July 24–25 in 2018 for 11 tobacco cultivars. The lines in (b) show the minimum, mean, and max values (from top to
bottom) for Vcmax and Jmax
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analyser (LI-6400, LICOR Biosciences, Lincoln, NE, USA). This ana-

lyser recorded response of photosynthesis (A) to a series of inter-

cellular CO2 concentration (Ci) in a stepwise adjustment, that is,

400, 200, 50, 100, 300, 400, 600, 900, 1,200, 1,500, 1,800, and

2,000 (μmol mol−2). Within 30 min of image acquisition, gas

exchange measurements were made on three sunlit, last fully

expanded leaves per plot at saturating light of 1,800 μmol m−2 s−1

under clear-sky conditions. Before initiating A/Ci curves, leaf tem-

perature was measured using a FLIR TG54 handheld IR gun, and the

block temperature was set to match this leaf temperature for the

subsequent measurements. Before each curve measurement, rela-

tive humidity inside the chamber was manually controlled to 65%

± 5% by adjusting the flow through the desiccant tube integrated

into the gas exchange system. Prior to the start of each curve, leaves

were given a minimum of 200 s to adapt to chamber conditions.

Measurements were made within 3 min at each CO2 step to mini-

mize alteration of the activation state of Rubisco. Photosynthetic

variables Vcmax and Jmax were calculated by fitting a mathematical

model (Bernacchi et al., 2004; Farquhar et al., 1980) with collected

A/Ci curves (Sharkey et al., 2007). Mesophyll conductance was

determined based on a previous study for tobacco at 25 � (Evans &

von Caemmerer, 2012). A total of 144 (117) leaf-level samples (three

leaf measurements from three plants per plot) were collected for

Vcmax (Jmax). These Vcmax and Jmax values were then respectively

averaged over three leaves to provide estimates per plot, yielding

48 measurements for Vcmax and 37 measurements for Jmax that were

used for building predictive models.

To determine leaf chlorophyll content, tissues were extracted

from leaves measured for gas exchange, immediately after gas

exchange measurements, using a cork borer. Leaf disks (approximately

2.01 cm2) were placed in 2 mL tubes and flash frozen in liquid nitro-

gen. Each leaf disc was incubated in 96% (v/v) ethanol for 3 days at

4�C. The bleached material and ethanol were mixed (100 μL of solu-

tion for each sample) and analysed with synergy 2 photospectrometer

(BioTek Instruments, Inc, Winooski, VT, USA) at 470, 649, and

665 nm. Chlorophyll a + b content was calculated according to

Lichtenthaler and Wellburn (1983). The three measurements of chlo-

rophyll a + b from different leaves were averaged to provide a single

value per plot, which was compared with that derived from RTM-

based chlorophyll a + b for validation.

3 | ANALYSIS TECHNIQUES

Figure 2 shows the overall workflow for data analysis in this study. It

consists of image-preprocessing and further modelling of canopy-level

reflectance with photosynthetic variables Vcmax and Jmax through PLSR

and indices-based analysis. An RTM designed specifically for close-

range remote sensing was applied to reflectance images of sunlit

leaves to estimate biophysical variables on a per-pixel basis. Spatially

averaged biophysical parameters at plot level were correlated to Vcmax

and Jmax through PLSR. In this study, performance of each approach

to predict Vcmax and Jmax was assessed based on the coefficient of

determination (R2) and RMSE, which were calculated using a 10-fold

F IGURE 2 The overall workflow for data analysis in this study
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cross-validation procedure due to a relatively small number of data

pairs available. The cross validation was repeated for 1,000 times for

predicting both Vcmax and Jmax.

3.1 | Image preprocessing

Raw images captured by the HSI camera were stored in digital numbers

with a 12-bit depth. Figure 3a shows a raw image collected on June

27, 2017, for cultivar 4. The image preprocessing involved three phases:

(1) radiometric calibration, (2) image classification, and (3) reflectance cal-

culation. During radiometric calibration, digital numbers from raw data

were converted to absolute spectral radiance (unit: W m−2 sr−1 μm−1)

using calibration files provided by the instrument company. For image

classification, an unsupervised classification algorithm, that is, k-means

clustering (Spath, 1985), was employed due to its simplicity. The number

of clusters set in the algorithm was 6. To further identify the white panel

and sunlit leaves from clusters, the following criteria were used. First, the

cluster that had the highest mean radiance value was labelled as the white

panel. Then both shadow-covered and sunlit leaves were identified from

clusters with a normalized difference VI value larger than 0.2. This thresh-

old value worked for all the images collected in this study. Third, sunlit

leaves were identified from one of the two clusters that exhibited a

higher mean spectral radiance. Figure 3b presents an example of image

classification using these steps, in which the reference panel and sunlit

leaves were accurately identified. In the third phase of image

preprocessing, reflectance was calculated using Equation (1).

R=
Ssunlit
Sref

*Rref : ð1Þ

In Equation (1), Ssunlit and Sref are radiance values from sunlit

leaves and the white reference panel, respectively, Rref refers to the

F IGURE 3 An example of data preprocessing steps to convert a raw image (a, RGB composite) to a reflectance image (c, RGB composite).
Panel (b) is an image classified from (a) using the k-means clustering algorithm, and panel (d) is a reflectance graph with shaded standard
deviations for a region of interest (red rectangle) in (c)
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reflectance of the white panel (calibrated) provided by Labsphere, and

R is the absolute reflectance of sunlit leaves. These image

preprocessing steps were coded in a python environment (Python

Software Foundation, https://www.python.org/) to automatically

convert collected raw images to reflectance images. This programming

system is practically important in high-throughput phenotyping of

multiple crop cultivars at the plot level.

3.2 | Partial least squares regression

The PLSR model was widely used to infer photosynthetic variables

from hyperspectral reflectance at the leaf level (Dechant et al.,

2017; Heckmann et al., 2017; Serbin et al., 2012; Yendrek et al.,

2017). It is a bilinear regression technique that can reduce a large

number of collinear spectral variables into several orthogonal com-

ponents (also known as latent variables; Geladi & Kowalski, 1986;

Wold et al., 2001). The model also projects the explained variables

(Vcmax and Jmax in this study) to a new space and then finds a linear

regression model between the predicted variables and the indepen-

dent variables in the new projection space (Geladi & Kowalski,

1986). Detailed descriptions of the PLSR algorithm can be found in

(Ehsani et al., 1999). In general, PLSR can be formulated as Equa-

tions (2) and (3).

y =
Xp
i=1

αi*lvi, i=1,2,…:p: ð2Þ

lvi =
Xm
j=1

λj*xj, i=1,2,…:p: ð3Þ

where y is the predicted photosynthetic variable (Vcmax or Jmax), p is

the number of latent variables used for regression, α refers to the

regression coefficients, lv represents the latent component computed

from the original input measurements x (with m as the dimension of

input data), and λ is the eigenvector of xTx for the transformed latent

component. Before PLSR, spectral data were normalized by comput-

ing the following metric: (raw-mean)/std. The optimal number of

latent variables was determined using the lowest RMSE of prediction

from cross validations, following Esbensen et al. (2002), to prevent

overfitting.

3.3 | Spectral indices-based analysis

Spectral indices based on two or three wavebands in the 400- to

900-nm region were selected from the literature and examined to

estimate photosynthetic variables among cultivars. Table 1 shows the

three types of spectral indices used in this study, that is, simple ratio

(SR; e.g., Clevers & Kooistra, 2012; Gitelson et al., 2003), modified

normalized difference index (mND; e.g., Gitelson & Merzlyak, 1994),

and structure insensitive pigment index (SIPI; e.g., Curran, 2004).

These spectral indices were generally designed for estimating photo-

synthetic pigment contents (e.g., chlorophyll a) and structure charac-

teristics at leaf and canopy levels and may have close associations

with photosynthetic capacity (e.g., Croft et al., 2017). Unlike leaf pig-

ment contents, photosynthetic variables Vcmax and Jmax do not show

obvious sensitivity to reflectance absorption and scattering in the

spectral domain but are closely correlated with leaf characteristics

(Serbin et al., 2012; Yendrek et al., 2017). The three types of spectral

indices were mainly used in this study to extract spectral signatures

from reflectance spectra within 400–900 nm.

Because different band combinations can be used to compute

these spectral indices, the optimal sets of wavebands were selected

based on the correlation coefficient between spectral indices and

photosynthetic variables. The performance of a spectral index to pre-

dict photosynthetic variables was evaluated using the squared Spe-

arman's rank correlation coefficient (ρ2). Compared with the Pearson's

correlation coefficient (linear), the Spearman's coefficient emphasizes

monotonic relationships (non-linear or linear), which would be more

suitable for mapping photosynthesis due to the possible non-linear

response of photosynthetic capacities to reflectance spectra. The

band wavelength ranging from 400 to 900 nm was used to calculate

the three types of spectral indices. In addition, for the mND and SIPI

indices, λref was set at 850 or 440 nm following Jay et al. (2017) to

ensure that the indices conformed to their original forms. Spectral

indices of each type that fell within the top 5% of correlation coeffi-

cient values (Hansen & Schjoerring, 2003) were selected as hyper-

spectral signatures. As this procedure may also lead to hundreds of

spectral indices selected for analysis, the PLSR was further used to

correlate these spectral indices with photosynthetic variables. The

performance of the spectral indices-based PLSR (including selection

of spectral indices) was evaluated using R2 and RMSE, derived from

1,000 cross validations.

3.4 | Radiative transfer model

An RTM, called PROCOSINE and developed to describe and simulate

leaf reflectance for close-range imaging spectroscopy (Jay et al., 2016)

on a per-pixel basis, was used as the third approach to estimate pho-

tosynthetic variables. Based on the PROSPECT model version 5b

(Feret et al., 2008), the newly developed close-range RTM allows for

direct and accurate estimations of foliar content from millimetre

TABLE 1 The type of spectral indices used in this study

Name of spectral index Equation

Simple Ratio (SR) Rλ1=Rλ2

Modified normalized

difference index (mND)

Rλref −Rλ1

� �
= Rλref +Rλ2

� �
, λ1 6¼ λ2

structure insensitive

pigment index (SIPI)

Rλref −Rλ1

� �
= Rλref −Rλ2

� �

Note: λref refers to the wavelength at 850 nm (near-infrared band) or 440

nm (blue band) following Jay et al. (2017).

6 FU ET AL.
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hyperspectral imagery using numerical inversions. As reported in Jay

et al. (2016), the PROCOSINE model can retrieve leaf biochemical

parameters with an R2 of ~0.9 and an RMSE of less than 10% in labo-

ratory conditions. Further technical details of the close-range RTM

can be found in Jay et al. (2016). The PROCOSINE model simulates

leaf reflectance as a function of eight parameters on a per-pixel basis:

leaf structure parameter N (unitless), leaf chlorophyll a + b concentra-

tion Cab (μg/cm2), carotenoid content Ccx (μg/cm2), brown pigment

content Cbp (unitless), equivalent water thickness Cw (cm), leaf mass

per area Cm (g/cm2), light incident angle θi (in �), and bidirectional

reflectance distribution function effect bspec (unitless). The PROC-

OSINE model can run in both backward (reflectance spectra > leaf

traits) and forward (leaf traits > reflectance spectra) modes. The

reduction of hyperspectral reflectance into eight parameters through

the PROCOSINE model thus provides insights on what leaf character-

istics are closely related with photosynthetic rates.

Inversion (or numerical solution) of the PROCOSINE model was

achieved based on the widely used lookup table (LUT) approach

(Dorigo, 2012; Richter et al., 2011). The LUT approach can help

reduce computation load of non-linear optimization of the eight

parameters from the PROCOSINE model with collected reflectance

spectra from 400 to 900 nm. To generate LUTs, the PROCOSINE

model was run in the forward mode to simulate reflectance based on

different sets of input variables. For each image, an LUT size of

100,000 entries was generated to balance computation load and

model inversion accuracy (Marie et al., 2000). Input variables in each

entry were randomly generated from the specific ranges as shown in

Table 2 with uniform distributions (Equation 4).

Vi =Vmin + Vmax−Vminð Þ*randi, i=1,…8: ð4Þ

where Vi is the variable value, Vmin and Vmax are the minimum and

maximum value of the ith variable (Table 2), and randi is a uniformly

distributed random number within 0–1.

To further constrain the model, brown pigment content was set

to zero because senescent leaves were not observed in the fields over

the study period. After the LUT generation, the RMSE between the

measured and simulated leaf reflectance was calculated for each LUT

entry on a per-pixel basis. The LUT entries of the 10 smallest RMSE

values were averaged as the solution to the inverse problem to reduce

uncertainty (Darvishzadeh et al., 2011). The seven parameters on a

per-pixel basis were then individually averaged to plot-level variables,

which were further correlated with photosynthetic variables using the

PLSR. The performance of the RTM-based PLSR was assessed using

R2 and RMSE, derived from 1,000 cross validations.

3.5 | Spectral resampling

Spectral resampling generally involves convolving reflectance spectra

to wider wavelength intervals around selected band centres or to the

spectral configuration of existing sensors (Adjorlolo et al., 2013). In

this study, the original reflectance spectra were resampled at different

spectral resolutions to investigate the impacts of spectral regions on

the PLSR performance for predicting photosynthetic capacities. The

objective of this analysis is to provide insights about whether a hyper-

spectral camera can be replaced by a multispectral camera to quantify

photosynthetic traits in a high-throughput manner.

As the HSI camera used in this study has 240 spectral bands, it is

impossible to examine the impacts of different band combinations

(after convolving the original reflectance spectra to wider band inter-

vals by selecting each of them as the band centre) on the predictive

performance of PLSR (240 permutations for band combinations).

Thus, important band centres were selected for the convolution of

the original reflectance spectra at different bandwidth intervals (4.2,

6.3, …, and 21 nm) from 400 to 900 nm. Important band centres were

chosen based on a threshold set on the absolute value of the PLS

regression coefficient at each wavelength (these coefficients were

used to predict Vcmax and Jmax as shown in Figure 4). The threshold

values used to select important spectral band centres ranged from

0 (all spectral bands were used) to 0.6 (only five to seven bands were

used) with an interval of 0.05. For each band centre, a Gaussian model

with a full width at half maximum (FWHM; Adjorlolo et al., 2013)

equivalent to the specified bandwidth interval (4.2, 6.3, …, and 21 nm)

was utilized for convolution of the original reflectance spectra

(as shown in Equation 5). After each spectral resampling, the perfor-

mance of the PLSR (R2 and RMSE) with inputs of new reflectance

spectra (1,000 cross validations) to predict photosynthetic parameters

Vcmax and Jmax was recorded for comparisons.

Rconv =

Ð λ2
λ1 R0WλdλÐ λ2
λ1 Wλdλ

Wλ =
1

δ
ffiffiffiffiffiffi
2π

p exp −
λ−λ0ð Þ2
2δ2

" #

FWHM=2
ffiffiffiffiffiffiffiffiffiffi
2ln2

p
δ

8>>>>>>>>><
>>>>>>>>>:

: ð5Þ

where Rconv refers to resampled reflectance spectra, R0 refers to origi-

nal reflectance spectra, Wλ is the weight per wavelength derived from

TABLE 2 Ranges of each input variable to generate lookup tables
for inverting the PROCOSINE model

Variable Unit Minimum Maximum

Leaf structure parameter N Unitless 1 3

Leaf chlorophyll a + b

concentration Cab

μg/cm2 0 100

Carotenoid content Ccx μg/cm2 0 30

Brown pigment content Cbp
a Unitless 0 0

Equivalent water thickness Cw cm 0.0005 0.1

Leaf mass per area Cm g/cm2 0.001 0.1

Light incident angle θi � 0 90

BRDF effect bspec Unitless −0.2 0.6

aBrown pigment content was set to zero because senescent leaves were

not observed in the field experiments.

Abbreviation: BRDF, bidirectional reflectance distribution function.
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the Gaussian model with the FWHM equivalent to the specified band-

width interval, δ is the standard deviation related to FWHM, and λ0 is

the band centre selected using the threshold set to the absolute value

of the PLS regression coefficients.

4 | RESULTS

4.1 | The predictive performance of PLSR with
reflectance spectra

Figure 4 presents comparisons between the observed photosynthetic

variables (Vcmax and Jmax) and those estimated from plot-level reflec-

tance spectra using the PLSR. The cross-validation results showed

that Vcmax and Jmax could be well predicted from reflectance spectra

with an R2 of 0.78 ± 0.02 and 0.81 ± 0.02, respectively, and with an

RMSE of 38.6 ± 1.7 and 23.4 ± 1.4 μmol m−2 s−1, respectively, at the

plot level. For Vcmax predictions, it was observed that the PLSR model

tended to underestimate values that were greater than

250 μmol m−2 s−1. However, the prediction uncertainty over the

1,000 cross-validation predictions was quite small as evidenced by

the small standard deviations in R2 (0.02) and RMSE (1.7). Compared

with the R2 for Vcmax, a larger R2 value for Jmax was found (Figure 4b).

4.2 | The predictive performance of PLSR with
hyperspectral signatures

Figures 5 and 6 show the squared correlation coefficients (ρ2) and

spectral indices for Vcmax and Jmax, respectively. These spectral indices

were in the form of SR (a), mND with the reference band at 850 nm

(b) and 440 nm (c), and SIPI with the reference band at 850 nm (d) and

440 nm (e). Hotspots with high correlation coefficients (red colours in

Figures 5 and 6) were identified for all possible band combinations of

the reflectance measured at 240 wavelengths. For example, Figures 5c

and 6c show that Vcmax and Jmax can be predicted with a ρ2 larger than

0.7 using mND (reference band at 440 nm), that is, λ1 between

700 and 720 nm and λ2 between 710 and 810 nm. The high correla-

tion of this identified spectral region with total chlorophyll and nitro-

gen contents, leaf mass, and LAI (Carter, 1994; Curran, 1994; Horler

et al., 1983) may explain the observed hotspots in Figures 5c and

6c. In addition, Figures 5a,d,e and 6a,d,e also highlight important spec-

tral regions from 470 to 530 nm and from 560 to 660 nm, respec-

tively. These spectral regions were strongly associated with leaf

pigment and nitrogen contents as well as light absorption of chloro-

phyll a (Blackburn, 1998; Carter, 1994; Faurtyot & Baret, 1997;

Gamon et al., 1992). Among all the spectral indices, mND with the ref-

erence band at 850 nm (Figures 5b and 6b) overall exhibited the worst

performance (squared correlation coefficients were well below 0.6)

for predicting both Vcmax and Jmax. Compared with the squared corre-

lation coefficients in Figure 5 (for Vcmax), those in Figure 6 (for Jmax)

were relatively smaller, which probably could be explained by the nar-

row value range of Jmax (Figure 1b) due to a limited number of

ground-truth samples.

Figure 7 presents comparisons between observed photosynthetic

variables, Vcmax (a) and Jmax (b), and those predicted from plot-level

hyperspectral signatures (spectral indices) using the PLSR. The value of

each predicted point in the scatter plot was the mean value of 1,000

cross-validation predictions. Only spectral indices of each category with

the correlation coefficient value falling within the top 5% were used to

highlight the contributions of important spectral regions to the predic-

tion performance. The selection of top 5% correlation coefficient values

led to a total of 617 spectral indices used for predicting Vcmax and a

total of 243 spectral indices used for predicting Jmax. With these

F IGURE 4 Comparisons between observed photosynthetic variables, Vcmax (a) and Jmax (b), and those predicted from plot-level hyperspectral

reflectance imaging using the partial least square regression. The value of each predicted point in the scatter plot was the mean value of 1,000
cross-validation predictions. The standard deviations of R2 and RMSE were also provided based on the 1,000 cross validations. The shape of
scatter points refers to the type of tobacco cultivars

8 FU ET AL.



selected hyperspectral signatures and PLSR, Vcmax can be predicted with

an R2 of 0.84 ± 0.02 and RMSE of 33.8 ± 2.2 μmol m−2 s−1 (Figure 7a).

More specifically, the use of hyperspectral signatures improved the

modelling performance by an increase of 0.06 (7.7%) in R2 and a reduc-

tion of 4.8 (12.4%) in RMSE compared with those in Figure 4. With the

selected spectral indices, the PLSR yielded an R2 of 0.80 ± 0.03 and

RMSE of 22.6 ± 1.6 μmol m−2 s−1 for predicting Jmax at plot level.

Although the use of spectral indices did not improve the R2 value, it led

to a reduction of RMSE by 0.8 (3.4%).

4.3 | The predictive performance of PLSR with
RTM-based variables

Using the LUT approach, the inversion of RTM PROCOSINE on a per-

pixel basis overall exhibited an R2 of 0.82 ± 0.03 and an RMSE of

0.022 ± 0.01 for comparing the simulated and measured reflectance

spectra from 400 to 900 nm. The performance of the PROCOSINE

model was also evaluated by the comparisons between measured and

predicted Chlorophyll a + b concentration with an R2 of 0.89 and an

RMSE of 1.42 μg/cm2 (Figure 8). Based on the RTM-derived parame-

ters, that is, leaf structure parameter N, leaf chlorophyll a + b concen-

tration Cab, carotenoid content Ccx, equivalent water thickness Cw, leaf

mass per area Cm, light incident angle θi, and bidirectional reflectance

distribution function effect bspec, the PLSR yielded an R2 of 0.65

± 0.03 with an RMSE of 42.9 ± 2.4 μmol m−2 s−1 for predicting Vcmax

(Figure 9a) and an R2 of 0.61 ± 0.04 with an RMSE of 32.7

± 2.8 μmol m−2 s−1 for predicting Jmax (Figure 9b).

4.4 | The impacts of spectral resolution on PLSR
performance

The impacts of spectral resolution on Vcmax and Jmax predictions were

examined through PLSR with resampled reflectance spectra as inputs

rather than with spectral indices and RTM-based traits as inputs. The

reason was that band centres were hard to identify in the RTM-based

approach and that band centres were similar between reflectance and

spectral indices-based approaches (as suggested by Figures 5, 6, and

10). Figure 10 shows the absolute value of PLSR coefficients used for

predicting Vcmax and Jmax (cross-validation predictions shown in Figure 4

were based on these coefficients). These absolute coefficient values

highlighted important spectral regions such as wavelengths around

660, 700, and 720 nm, and similar important spectral regions were also

identified using the spectral indices-based correlation analysis (Figures 5

and 6). These important spectral regions were also consistent with pre-

vious studies such as Serbin et al. (2012) and Yendrek et al. (2017). With

the threshold value ranging from 0 to 0.6 (with an interval of 0.05), the

number of band centres used for spectral convolution varied from

240 to 7 for Vcmax and from 240 to 5 for Jmax (Figure 10).

F IGURE 5 The squared correlation coefficients (ρ2) between Vcmax and spectral indices in the form of simple ratio (a), modified normalized
difference index with the reference band at 850 nm (b) and 440 nm (c), and structure insensitive pigment index with the reference band at
850 nm (d) and 440 nm (e). The equations of these spectral indices were Rλ1=Rλ2 for SR, Rλref −Rλ1

� �
= Rλref +Rλ2

� �
, λ1 6¼ λ2 for mND, and

Rλref −Rλ1

� �
= Rλref −Rλ2

� �
for SIPI. λref refers to the wavelength at 850 nm (near-infrared band) or 440 nm (blue band)
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Figure 11 presents the performance (R2 and RMSE) of PLSR with res-

ampled reflectance spectra as inputs for predicting Vcmax (a,b) and Jmax (c,d)

at each threshold with different spectral resolutions. Generally, as the

threshold value varied from 0 to 0.6, two peaks in R2 at the threshold

coefficients of 0.15 and 0.55 emerged for predicting Vcmax (Figure 11a).

More specifically, an increased trend in R2 was observed as the coefficient

threshold value ranged from 0 to 0.15 and from 0.4 to 0.6, and a decreased

trend in R2 was found as the coefficient threshold value changed from

F IGURE 7 Comparisons between observed photosynthetic variables, Vcmax (a) and Jmax (b), and those predicted from plot-level hyperspectral
signatures (spectral indices) using the partial least square regression. The value of each predicted point in the scatter plot was the mean value of
1,000 cross-validation predictions. The standard deviations of R2 and RMSE were also provided based on the 1,000 cross validations. The shape
of scatter points refers to the type of tobacco cultivars

F IGURE 6 The squared correlation coefficients (ρ2) between Jmax and spectral indices in the form of simple ratio (a), modified normalized
difference index with the reference band at 850 nm (b) and 440 nm (c), and structure insensitive pigment index with the reference band at
850 nm (d) and 440 nm (e). The equations of these spectral indices were Rλ1=Rλ2 for SR, Rλref −Rλ1

� �
= Rλref +Rλ2

� �
, λ1 6¼ λ2 for mND, and

Rλref −Rλ1

� �
= Rλref −Rλ2

� �
for SIPI. λref refers to the wavelength at 850 nm (near-infrared band) or 440 nm (blue band)
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0.15 to 0.4. The corresponding RMSE value varied in an opposite direction

as shown in Figure 11b. These findings suggested that there existed an

optimal number of spectral bands (132) used for predicting Vcmax and more

than or less than this number of spectral bands could reduce the predictive

performance of PLSR. Even though there was a peak in R2 as threshold

coefficient varied from 0.4 to 0.6, the peak R2 values were generally less

than those observed at the threshold coefficient of 0.15. In addition, it was

found that R2 values across different spectral resolution at the threshold

coefficient value of 0.6 were very similar to those at the threshold coeffi-

cient value of 0 (with difference in R2 no more than 0.04 between the two

thresholds). These similar R2 values indicated that it may be possible to pre-

dict Vcmax using a multispectral camera (with seven spectral bands at the

threshold value of 0.6). However, such a conclusion requires further

modelling efforts with a customized camera with spectral regions around

700 and 720 nm (Figure 10). As spectral resolution increased, the R2

(RMSE) generally displayed an increase (decrease) trend for predicting Vcmax

with more fluctuations at the threshold values of 0.55 and 0.6, which may

highlight impacts from both the number of band centres and spectral reso-

lutions on the predictive performance of PLSR.

For Jmax predictions, R2 across different coefficient threshold

values exhibited three major peaks at 0.15, 0.4, and 0.55, respectively

(Figure 11c). The highest peak R2 value was 0.81, similar to that in

Figure 4. As the coefficient threshold value varied from 0 to 0.2,

F IGURE 9 Comparisons between observed photosynthetic variables, Vcmax (a) and Jmax (b), and those predicted from radiative transfer model-
derived variables using the partial least square regression. The value of each predicted point in the scatter plot was the mean value of 1,000
cross-validation predictions. The standard deviations of R2 and RMSE were also provided based on the 1,000 cross validations. The shape of
scatter points refers to the type of tobacco cultivars

F IGURE 8 Comparisons between measured chlorophyll a + b (Cab)
and that predicted from the radiative transfer model PROCOSINE

F IGURE 10 The partial least square regression coefficients (absolute

value) used for predicting Vcmax and Jmax (solid lines), the threshold (value
ranged from 0 to 0.6) used to select band centres (dash lines), and the
number of band centres used for convolution at each threshold
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spectral resolution only exerted minor impacts on the R2 and RMSE

values, evidenced by similar R2 and RMSE values across different spec-

tral resolutions within this threshold range (Figure 11c,d). In contrast,

large fluctuations (high standard deviations) in R2 and RMSE across dif-

ferent spectral resolutions were observed with the coefficient thresh-

old value ranging from 0.2 to 0.6 (particularly at the coefficient

threshold value of 0.4). This phenomenon may suggest the number of

band centres rather than spectral resolution as a major factor affecting

the performance of PLSR for predicting Jmax. At the coefficient thresh-

old value of 0.4, the highest R2 value was 0.80 with the spectral reso-

lution set at 6.3 nm. This R2 value was consistent with the peak value

at the coefficient threshold value of 0.15 and that provided in

Figure 4. This finding suggested that Jmax could be predicted using a

reduced number of spectral bands with a same modelling performance

as predictions using all 240 spectral bands. As indicated in Figure 10,

the number of band centres was 14 with the coefficient threshold

value set as 0.4. The removal of spectral redundancy and collinearity

may explain a still good performance of PLSR, that is, the reduction of

spectral bands from 240 to 14 may largely remove spectral redun-

dancy and collinearity that exist among all the 240 spectral bands.

These results also indicated that it may be possible to predict Jmax

using a multispectral camera with spectral regions around 700 and

720 nm but with a spectral resolution smaller than 16.8 nm.

5 | DISCUSSION

5.1 | Mapping photosynthetic traits at the canopy
level

This study provided direct evidence that mapping Vcmax and Jmax at

the canopy level could be successful with reflectance spectra

F IGURE 11 The predictive performance (R2 and RMSE) of partial least square regression (PLSR) with inputs of reflectance spectra for
predicting Vcmax (a,b) and Jmax (c,d) at different spectral resolutions (4.2, 6.3, …, and 21.0 nm) and different coefficient threshold. Band centres
were selected based on a series of PLSR band-specific coefficient thresholds (value ranged from 0 to 0.6) set on the absolute values of PLSR
regression coefficients (These regression coefficients were used for cross validations as shown in Figure 4)
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(or derived variables) from 400 to 900 nm used as predictors. The

findings shown in Figure 4 were in agreement with previous studies

to show the PLSR model as an effective tool to predict photosynthetic

variables across different spatial scales (Ainsworth et al., 2014;

Dechant et al., 2017; Fu et al., 2019; Meacham-Hensold et al., 2019;

Serbin et al., 2012; Serbin et al., 2015). However, this study only used

reflectance spectra from 400 to 900 nm for the PLSR modelling,

which exhibited an even higher or at least similar R2 value compared

with previous modelling results at the leaf level (e.g., Dechant et al.,

2017). Results presented in this study showed that Vcmax and Jmax

could be well estimated for 11 cultivars of one crop (including both

genetically modified and wild types) using the proposed three

approaches (i.e., PLSR of reflectance spectra, spectral indices, and

RTM-inversion of crop traits) with R2 all larger than 0.6. These model-

ling performances at the canopy level using reflectance spectra from

400 to 900 nm were even better than those at the leaf level using a

similar dataset from the whole spectrum (400–2,500 nm; Fu et al.,

2019; Meacham-Hensold et al., 2019). A similar finding was also

observed in comparisons between Serbin et al. (2012) and Serbin

et al. (2015) for tree species: Vcmax were better predicted at the can-

opy level (R2 = 0.94) than at the leaf level (R2 = 0.89). These results

may indicate that the spatial averaging of photosynthetic parameters

and pixel-based reflectance spectra removed intraplot variations that

can be seen from leaf-level analysis and potentially led to better pre-

dictive performances at the plot level. Another possible reason for the

better predictions at the canopy level than the leaf level may be asso-

ciated with plant geometry structure. For example, leaves from plants

with higher Vcmax and Jmax tend to be flatter and thus can provide

more homogeneous reflectance measurements that would improve

the modelling performance. However, further research is needed to

test this hypothesis.

Compared with Serbin et al. (2015), predictive performance of

Vcmax (R
2 = 0.78) presented in this study was relatively worse. In our

study, Vcmax was determined at field temperatures rather than normal-

ized to a reference temperature as done previously (Serbin et al.,

2015). Vcmax has a strong temperature dependence typical of enzy-

matically driven reactions (e.g., Bernacchi et al., 2001); thus, variation

in temperature does not reflect changes in Rubisco content (Dechant

et al., 2017) suggesting that the temperature response may not be

detected using reflectance spectra. In addition, the relatively worse

performance of Vcmax predictions in this study was partly attributed to

the use of reflectance spectra from 400 to 900 nm rather than the full

spectrum (excluding water absorption bands) in Serbin et al. (2015).

However, it is expected that the modelling performance from the full

spectrum for predicting Vcmax and Jmax should be very similar to that

from the spectral regions (400–900 nm) used in this study, evidenced

by results at the leaf level in Fu et al., (2019) and Dechant

et al. (2017).

In this study, a better performance of the PLSR approach with

spectral indices as inputs, compared with that with reflectance spectra

as inputs, for predicting Vcmax (higher R
2 and lower RMSE values) and

Jmax (similar R2 but lower RMSE values) was observed. This should be

attributed to the fact that the optimized spectral indices were

generally less sensitive to the errors in absolute reflectance measure-

ments. As the spectra-based PLSR approach critically depended on

the accuracy of absolute reflectance spectra, subtle changes in sky

(e.g., directional illumination) and weather conditions (e.g., wind

speed), which can introduce variations in measured reflectance spec-

tra, may lead to uncertainties in predictions of Vcmax and Jmax. How-

ever, because these spectral indices were optimized to predict

photosynthetic traits for tobacco plants, the spectral indices-based

PLSR approach may be less generalizable (i.e., a relatively worse pre-

diction performance) to extend to other plant species than spectral-

based PLSR approach (e.g., Yang et al., 2016).

Vcmax and Jmax predictions with an R2 around 0.8 using

reflectance-based and spectral indices-based approaches (Figures 4

and 7) further suggested that plot-level high-throughput phenotyping

of photosynthetic traits could be successful. This result is of impor-

tance to further advance and speed up plant breeding processes using

hyperspectral sensors onboard different sensing platforms

(e.g., gantries, robotics, and unmanned aerial vehicles) that can easily

scan a relatively larger number of crop cultivars in an automatic man-

ner. The automatic collection of hyperspectral images with close-

range or remote sensing platforms would relieve the efforts to collect

reflectance spectra using hand-held devices such as FieldSpec4

(Analytical Spectral Devices, Boulder, Colorado). Plus, the use of

reflectance spectra from 400–900 nm only and the potential replace-

ment of a hyperspectral camera by a multispectral camera (as shown

in Figure 11) can lower the payloads on sensing platforms (particularly

useful for unmanned aerial vehicles-based sensing platforms) as well

as phenotyping costs. However, as the variance in Vcmax and Jmax

(as shown in Figure 1b) for tobacco cultivars is generally larger than

that for food crops such as maize and soybean, research efforts are

still needed to evaluate the developed approaches in high-throughput

phenotyping of food crops for desired photosynthetic improvements.

More importantly, there is a need to explore whether the developed

approaches for estimating photosynthetic capacities are species

dependent (Fu et al., 2019).

5.2 | Mechanisms for correlating reflectance
spectra with photosynthetic capacities

Both the reflectance spectra-based and spectral indices-based

approaches highlighted similar spectral regions (Figures 5, 6, and 10)

used in Vcmax and Jmax predictions. As shown in Figure 10, PLSR coef-

ficients for predicting Vcmax and Jmax were consistent with those at

the leaf level (e.g., Ainsworth et al., 2014) and agreed with the current

understanding of the correlation between reflectance spectra and

foliar biochemistry and physiology (Dechant et al., 2017; Serbin et al.,

2015). For example, Vcmax and Jmax appear to be strongly associated

with reflectance at 700 and 720 nm (the red edge), pointing to the

fact that healthy green vegetation absorbs radiation at long red wave-

lengths. For Vcmax predictions, the wavelength at 768.2 nm was

observed as it had a high PLSR coefficient (Figure 10) and correlation

coefficient (Figures 5 and 6). This high regression/correlation
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coefficient may indicate a strong relationship between solar-induced

fluorescence (SIF) and photosynthetic capacities at the canopy level

because the SIF signal at ~768 nm can be easily detected with the

camera of high spectral resolution (~2.0 nm) used in this study with

the spectral fitting method (Zhang et al., 2018; Zhang et al., 2014) and

is included in the reflectance spectra for predictions of photosynthetic

capacities. Further analysis of the contribution of SIF signals to predic-

tions of photosynthetic variables is still necessary in our future work.

Further examination of correlation or regression coefficients as

shown in Figures 5, 6, and 10 suggested that spectral regions associ-

ated with leaf characteristics such as structure and pigments also

played an important role in Vcmax and Jmax predictions. Recently,

Dechant et al. (2017) concluded that the prediction of Vcmax and Jmax

using reflectance spectra for tree species was mainly attributed to the

relationship between reflectance spectra and nitrogen content per

area. Our results also highlighted important spectral regions at

600 and 660 nm related to nitrogen content (Carter, 1994; Faurtyot &

Baret, 1997) that were used for both Vcmax and Jmax predictions. A

higher nitrogen content per area was generally translated to a greater

photosynthetic capacity due to its importance as a component of the

enzyme Rubisco (Wright et al., 2004). However, the correlation/

regression coefficient in this study did not suggest a dominating factor

of nitrogen content to explain photosynthetic variations among crop

cultivars, which would probably be explained by the fact that species

used in this study included both wild-type and genetically modified

cultivars that may decouple the well-known relationship between leaf

nitrogen and photosynthetic capacities (Meacham-Hensold

et al. 2019).

Compared with the other two approaches (as shown in Figures 4

and 7), PLSR based on RTM-derived parameters had the worst predic-

tive performance. This finding should be reasonable as the reduction

of hyperspectral reflectance variables (248 variables from 400 to

900 nm) into only seven parameters through the PROCOSINE model

would lose spectral information associated with photosynthetic

capacity. Furthermore, prediction errors in these seven leaf parame-

ters existed as the PROCOSINE model assumed negligible diffuse illu-

mination conditions (Jay et al., 2016). However, the RTM-based

approach revealed that important leaf characteristics associated with

photosynthesis as the seven parameters derived from reflectance

spectral together could explain ~60% of variance (based on the R2 in

Figure 9) in both Vcmax and Jmax. More specifically, as shown in

Figure 12, the PLSR components used to predict Vcmax and Jmax were

highly affected by light incident angle (defined as sun zenith angle in

Jay et al., 2016; negative regression coefficient) and leaf chlorophyll

content (positive regression coefficient). The good relationship

between chlorophyll content and photosynthetic capacities has been

reported in previous literatures (e.g., Houborg et al., 2013; Croft et al.,

2017) because chlorophyll is important in harvesting light for photo-

synthesis for the reactions of the Calvin-Benson cycle. In addition,

light incident angle was strongly associated with both Vcmax and Jmax

predictions probably because it was related to the amount of light

radiation received by leaves at the canopy level. This implied that

Vcmax and Jmax predictions were sensitive to the surrounding light

environments, which may be tied to changes of nitrogen fractions

invested in Rubisco and pigment-associated proteins (Evans &

Poorter, 2001). Despite the possible insights from the RTM-based

approach, caveats should be made for these interpretations because

only model-derived leaf parameters rather than actual measurements

were used for analysis. As the PROCOSINE model showed good

fitting performance and validation against measured chlorophyll a + b

content, it was assumed in this study that other six leaf parameters

were also estimated with high accuracy.

5.3 | Implications for broad-scale mapping of Vcmax

and Jmax from satellite remote sensing

The current study along with previous studies Fu et al. (2019) and Ser-

bin et al. (2015) provided evidence that the PLSR-based approach for

predicting Vcmax and Jmax could be scaled from leaf to plot and to land-

scape levels. The developed approaches, especially reflectance

spectra-based and spectral indices-based approaches, can be easily

used to map Vcmax and Jmax at regional and global scales using satellite

hyperspectral images. Future hyperspectral remote sensing missions

such as NASA's Surface Biology and Geology mission (National Acad-

emies of Sciences, Engineering & Medicine, 2018) and the German

Environmental Mapping and Analysis Program (Stuffler et al., 2007)

will provide unique potential for deriving spatially and temporally con-

tinuous plant physiology information. As the current study was con-

ducted at the plot level using close-range sensing platforms, it is

expected that more considerations should be taken into the provision

F IGURE 12 The partial least square regression (PLSR) regression
coefficient for the radiative transfer model-based approach to predict
Vcmax and Jmax. The x-axis refers to the seven parameters derived from
reflectance spectra using the PROCOSINE model. Leaf structure
parameter N, chlorophyll content Cab (μg/cm2), carotenoid content Ccx

(μg/cm2), equivalent water thickness Cw (cm), dry matter content Cdm

(g/cm2), light incident angle in degree θi, and specular parameter bspec
(unitless). The seven variables input to the PLSR were normalized by
(raw-mean)/std so the regression coefficients were comparable
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of readily useable reflectance product from satellite-based remote

sensing platforms in the future. At present, no atmospheric correction

was made to the hyperspectral images collected at the plot level. This

correction should be implemented for satellite or airborne remote

sensing due to stronger atmospheric absorption and scattering that

can seriously obscure optical properties of land surfaces. Furthermore,

spurious variations in reflectance spectra induced by multisource vari-

ability such as plant geometry and architecture, leaf scattering proper-

ties, and background soil should be also accounted for at a broader

scale using satellite data. Compared with hyperspectral imagery col-

lected from the close-range platform used in this study, satellite-based

hyperspectral data generally have a much coarse spatial resolution.

This coarse spatial resolution at a broad scale may further degrade the

modelling performance provided in this study because reflectance

spectra from each pixel may contain an ensemble spectral signature of

sunlit and shaded leaves from the same or different plant species.

Despite success of the current study, the analysis was limited to

wild and genetically modified tobacco cultivars. As such, the scaling of

the developed approaches to a broader scale requires further efforts

in collecting ground-truth Vcmax and Jmax across a diverse population

of plant species within each ecoregion/ecosystem for model calibra-

tion and validation. However, the collection of ground-truth Vcmax and

Jmax across ecosystems is time consuming and not a trivial matter.

Thus, the examination of the developed approaches to estimate Vcmax

and Jmax at local scale (e.g., small agricultural fields with different plant

species) is still necessary to help overcome challenges induced by

insufficient sampling of ground-truth measurements at global scale.

For example, Croft et al. (2017) suggested that leaf chlorophyll con-

tent, compared with leaf nitrogen content, provided more accurate

estimations of Vcmax within a deciduous forest. This conclusion can be

further explored in agricultural fields with a more diverse population

of plant species. The performance of leaf chlorophyll content as a

proxy for Vcmax at agricultural fields may further reveal expectations

of performance of leaf chlorophyll content to capture photosynthetic

variations at ecosystem level. Finally, at a broad scale, the RTM-based

approach (using PROSAIL rather than PROCOSINE) to predict photo-

synthetic capacities should be further examined because of large

uncertainties of model inversions that may be induced by the LUT

approach.

5.4 | Improving the characterization of
photosynthesis in process-based crop models

The developed approaches to predict photosynthetic capacities for

both wild-type and genetically modified tobacco cultivars from reflec-

tance spectra suggested promising means to improve the characteri-

zation of photosynthesis in global process-based crop models. These

crop models, for example, participant models in the Agricultural Model

Intercomparison and Improvement Project (Rosenzweig et al., 2014),

are the principle ways to understand response of crop yield to climate

change factors including temperature, precipitation, and CO2 (Bassu

et al., 2014; Deryng et al., 2016; Schauberger et al., 2017; Wang et al.,

2017). However, photosynthesis representation is generally not

explicitly included in these global crop models, limiting the under-

standing of impacts of enhancing photosynthesis on crop yield under

various environmental factors (Wu et al., 2019). Currently, photosyn-

thesis improvements, primarily related to modifications of Vcmax, Jmax,

and mesophyll conductance for CO2 (von Caemmerer & Evans, 2010;

von Caemmerer & Furbank, 2016), are expected as important avenues

to increase crop yield to satisfy growing demand for food, fuel, and

clothing in the future (Long et al., 2015). It remains a scientific issue

whether enhancing leaf photosynthesis would translate to higher crop

yield and biomass due to the complex interactions between crop

growth and the surrounding environmental factors (Wu et al., 2019).

Thus, accurate characterization of photosynthesis and its coupling

with global crop models have the potential to assess and guide photo-

synthetic manipulation efforts. As hyperspectral remote sensing data

become available in the future, the developed approaches have the

potential to yield global photosynthetic parameters that can be input

to the crop models to understand the impacts of photosynthetic

improvements on crop yield under various climate conditions. Further

work is needed to possibly include a data assimilation module within

the global crop models to take in photosynthetic information directly

rather than to use a predefined relationship between photosynthetic

parameters and specific leaf nitrogen (De Pury & Farquhar, 1997). This

predefined empirical relationship may not be able to fully capture vari-

ations in photosynthesis to account for crop yield variability in both

spatial and temporal domains.
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