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Abstract
Improving photosynthesis is considered a promising way to increase crop yield to feed a growing population. Realizing 
this goal requires non-destructive techniques to quantify photosynthetic variation among crop cultivars. Despite ex-
isting remote sensing-based approaches, it remains a question whether solar-induced fluorescence (SIF) can facilitate 
screening crop cultivars of improved photosynthetic capacity in plant breeding trials. Here we tested a hypothesis that 
SIF yield rather than SIF had a better relationship with the maximum electron transport rate (Jmax). Time-synchronized 
hyperspectral images and irradiance spectra of sunlight under clear-sky conditions were combined to estimate SIF and 
SIF yield, which were then correlated with ground-truth Vcmax and Jmax. With observations binned over time (i.e. group 
1: 6, 7, and 12 July 2017; group 2: 31 July and 18 August 2017; and group 3: 24 and 25 July 2018), SIF yield showed a 
stronger negative relationship, compared with SIF, with photosynthetic variables. Using SIF yield for Jmax (Vcmax) pre-
dictions, the regression analysis exhibited an R2 of 0.62 (0.71) and root mean square error (RMSE) of 11.88 (46.86) μmol 
m–2 s–1 for group 1, an R2 of 0.85 (0.72) and RMSE of 13.51 (49.32) μmol m–2 s–1 for group 2, and an R2 of 0.92 (0.87) and 
RMSE of 15.23 (30.29) μmol m–2 s–1 for group 3. The combined use of hyperspectral images and irradiance measure-
ments provides an alternative yet promising approach to characterization of photosynthetic parameters at plot level.

Keywords:  Gas exchange, hyperspectral images, phenotyping, photosynthesis, plant breeding, solar-induced fluorescence.

Introduction
Improving photosynthesis is regarded as a promising means 
by which crop yields can be improved to meet increasing 
pressure on global agricultural yields (Parry et al., 2010; Long 
et al., 2015; Ort et al., 2015). Research e!orts are underway 

to explore photosynthetic variation among both genetic-
ally modi"ed and wild-type crop cultivars (von Caemmerer 
and Evans, 2010; Lawson et al., 2012; Evans, 2013; Andralojc 
et  al., 2018) for which accurate and rapid measurements of 
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photosynthetic capacity are required. For C3 crops, photosyn-
thetic capacity is primarily determined by the maximum rate 
of Rubisco carboxylation (Vcmax) and the maximum electron 
transport rate (Jmax) (Farquhar et  al., 1980; Bernacchi et  al., 
2003). Traditionally, Vcmax and Jmax are measured using leaf gas 
exchange which is both time-consuming and labor-intensive, 
and thus an impractical solution to quantify photosynthetic 
variation for hundreds and thousands of crop cultivars investi-
gated in a crop breeding context (Tester and Langridge, 2010; 
Furbank and Tester, 2011; Araus and Cairns, 2014). Thus, ad-
vanced techniques to characterize variations of photosynthetic 
capacity accurately in a rapid manner at "eld scale are greatly 
needed to accelerate selection of crop cultivars with improved 
photosynthesis (Furbank et al., 2019).

Numerous methods have been developed to estimate photo-
synthetic capacity spatially and temporally using remotely 
sensed data, primarily for improved mapping and modeling of 
gross primary productivity (GPP) at regional and global scales 
(e.g. Sims et al., 2008, Houborg et al., 2013, Serbin et al., 2015), 
and He et al., 2019). These methods may also be applied at "eld 
scale to assess photosynthetic performance of crop cultivars in 
breeding trials using high-throughput phenotyping platforms 
(HTPPs) mounted with (hyper)spectral sensors (Camino et al., 
2019; Fu et al., 2019; Meacham-Hensold et al., 2019). Remote 
sensing techniques to estimate photosynthetic capacity gener-
ally fall into three categories depending on proxy variables [i.e. 
re#ectance, leaf traits, and solar-induced #uorescence (SIF)] 
used to build the empirical relationship.

The "rst category involves directly relating re#ectance 
spectra in a few of absorption/re#ection wavelengths (e.g. 
spectral indices) or full spectra (400–2500 nm) to photosyn-
thetic variables (i.e. Vcmax and Jmax) using machine learning al-
gorithms (Serbin et al., 2012; Heckmann et al., 2017; Yendrek 
et  al., 2017; Meacham-Hensold et  al., 2019; Fu et  al., 2020). 
However, understanding of the underlying mechanisms for 
predicting photosynthetic capacity from re#ectance spectra 
and indices remains largely unsolved. This lack of explainable 
features limits extrapolation of predictions of photosynthetic 
variation to other species or crop cultivars under various en-
vironmental conditions (Fu et al., 2019).

The second category uses remotely estimated plant func-
tional traits such as leaf nitrogen as proxies for photosynthetic 
capacity (Kattge et al., 2009; Walker et al., 2014). These plant 
function traits are generally correlated with enzymes or light-
harvesting pigments that can modulate the photosynthesis 
process. For example, the photosynthetic carbon-assimilating 
enzyme Rubisco is the dominant protein found in leaf ma-
terial and thus is highly correlated with nitrogen concentra-
tion (Evans, 1989). More recently, studies have suggested that 
leaf chlorophyll, responsible for light harvesting in photosyn-
thesis, would be a better proxy than leaf nitrogen for seasonal 
variations in photosynthetic capacity (Houborg et  al., 2013; 
Alton, 2017; Croft et  al., 2017). Despite success in mapping 
seasonal variations in photosynthetic capacity, this group of 
techniques may not be directly applicable at "eld scale in a 
plant breeding context since spurious variations in re#ect-
ance spectra incurred by plant geometry and soil background 
are not easily accounted for with HTPP to estimate leaf 

chlorophyll or nitrogen (Jay et  al., 2016; Mohd Asaari et  al., 
2018). Thus, estimations of photosynthetic capacity su!er the 
error propagation from empirical or machine learning models 
used to retrieve leaf pigments. Additionally, recent work shows 
that the relationship between photosynthetic capacity and 
leaf nitrogen may not hold for genetically modi"ed crop cul-
tivars (Meacham-Hensold et  al., 2019). Leaf chlorophyll was 
also shown to exhibit a worse relationship with photosynthetic 
variables (R2 of <<0.5) compared with re#ectance spectra (R2 
of ~0.8) at small "eld scale (Fu et al., 2020).

The third category of techniques is based on SIF as an in-
dicator for photosynthetic activity (Zhang et al., 2014, 2018). 
SIF represents light emission resulting from excited chloro-
phyll molecules and competes with photochemistry and non-
photochemical quenching (NPQ) pathways for de-excitation 
(Porcar-Castell et al., 2014). Thus, changes in SIF can be used 
to probe the photosynthetic apparatus and CO2 exchange at 
various spatial scales. SIF has been shown to have a quasi-linear 
relationship with canopy-scale photosynthesis, generally re-
ferred to as GPP, for various ecosystems (Frankenberg et  al., 
2011; Yang et  al., 2017; Li et  al., 2018), and therefore is not 
generally associated with the underlying photosynthetic physi-
ology. Evidence suggests that the relationship between GPP 
and SIF becomes more linear with increasing spatial and tem-
poral extents (Guanter et al., 2012; Sun et al., 2017; Verma et al., 
2017; Miao et al., 2018; Yang et al., 2018; Magney et al., 2019). 
Thus, SIF as a proxy of photosynthesis for small-"eld plots 
may be problematic (e.g. 1 m2 in plant breeding trials) since 
only a few selected dates of gas exchange measurements asso-
ciated with photosynthetic variations are collected (Fu et al., 
2019; Meacham-Hensold et al., 2019). Recent analysis using 
the SCOPE (Soil Canopy Observation, Photochemistry and 
Energy Fluxes) model shows that SIF is more related to canopy 
properties such as chlorophyll content, leaf area index, and leaf 
angle distribution than Vcmax (Ko% et al., 2015; Verrelst et al., 
2015). As such, further studies are warranted to evaluate the 
feasibility of SIF to estimate photosynthetic capacity particu-
larly at the "eld scale that may provide mechanistic linkages 
between SIF and photosynthetic physiology.

As HTPPs with spectroradiometers and cameras of high 
spectral resolution are widely used for plant phenotyping 
(e.g. Araus et al., 2018), there exist opportunities to evaluate 
SIF-based methods for identifying di!erences in photosyn-
thetic capacities among crop cultivars at plot level based on 
millimeter spatial resolution hyperspectral imagery. At pre-
sent, it remains uncertain whether SIF-associated signals can 
be used as proxies for photosynthetic capacity including Vcmax 
and Jmax at plot scales in a high-throughput phenotyping 
context. As light absorbed by plants can experience one of 
three fates (photochemistry, NPQ, or SIF) in competition, 
the increase in yield of one will result in a decrease in yield 
of the other two (Maxwell and Johnson, 2000; Müller et al., 
2001). Thus, we hypothesize that the increase of SIF yield 
[de"ned as the ratio between SIF and absorbed photosyn-
thetically active radiation (PAR)] would lead to a decrease 
of the electron transport rate (i.e. Jmax) under saturated light 
conditions. Given the competing relationship of electrons 
for three competitive fates, it follows that electron transport 
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capacity (Jmax) decreases as SIF yield increases. Thus, Jmax was 
used to test the hypothesis. The hypothesis is only made to 
Jmax since SIF can vary as a result of availability of electron 
acceptors in the PSII, and NPQ measurements are not ob-
tainable with the current phenotyping platform and sensors. 
Furthermore, because PSII electron transport is correlated 
well with CO2 "xation (i.e. the correlation between Vcmax 
and Jmax) (Edwards and Baker, 1993), we hypothesize that 
the SIF yield will also have a close relationship to Vcmax but 
not as strong as the relationship to Jmax. This weaker relation-
ship is predicted since #uorescence capture is more closely 
linked with the electron transport chain (represented as Jmax) 
while rates of CO2 "xation may compete with other pro-
cesses such as photorespiration, nitrogen metabolism, and 
electron donation to oxygen (the Mehler reaction).

By addressing these hypotheses, this study di!ers from pre-
vious studies in using satellite-based SIF measurement to probe 
photosynthesis (or GPP at the ecosystem level) by providing a 
more in-depth investigation of the possible mechanistic link-
ages between SIF-related information and photosynthetic 
physiology. The objective of this study is to explore means, 
through the combined use of sensors, for high-throughput 
screening of crop trials aimed at selecting cultivars for im-
proved photosynthetic performance at the plot level.

Materials and methods
Plant materials and experimental design
Both wild-type and genetically modi"ed tobacco (Nicotiana tabacum) cul-
tivars (totaling 10 cultivars) were used to evaluate SIF/SIF yield as a proxy 
for photosynthetic capacity. These cultivars exhibited large variations in 
photosynthetic traits ranging from 15.98 μmol m–2 s–1 to 318.96 μmol 
m–2 s–1 for Vcmax, and from 118.85 μmol m–2 s–1 to 338.70 μmol m–2 s–1 
for Jmax (Fu et al., 2020). The genetically modi"ed lines have alterations 
to the photosynthetic pathway including increased carbon reduction en-
zymes, a photorespiratory bypass, and lines with increased electron trans-
port in metabolite pools, leading to Vcmax or Jmax >300.00  μmol m–2 
s–1. Further descriptions of these cultivars can be found in Meacham-
Hensold et al. (2019, 2020).

Cultivar seedlings were germinated in a greenhouse and then trans-
planted to the "eld site of the University of Illinois Energy Farm 

(40.063°N, 88.207°W; descriptions of this farm are available at http://
energyfarm.illinois.edu/index.html) at the four-leaf stage. Two weeks be-
fore transplanting, the "eld site was fertilized with a high level of nitrogen 
(ESN Smart Nitrogen, 310  kg ha–1, ~150  ppm). In addition, the "eld 
site was controlled for tobacco pests using a biological pesticide Bacillus 
thuringiensis v. kurstaki (54%) (DiPel PRO) applied "rst at 5 d before trans-
planting and then at bi-weekly intervals. Two days before transplanting, a 
broad action herbicide, glyphosate-isopropylammonium (41%) (Killzall; 
VPG) (15 liters at 70 g l–1) was also applied to the "eld site. Throughout 
plant growth, irrigation was provided as needed. Each tobacco cultivar 
was planted in four replicated plots arranged in a 6×6 grid (36 plants 
per plot) with 0.38 m spacing between plantings. Field measurements 
associated with hyperspectral re#ectance, gas exchange, and irradiance/
radiance were made on various dates—6, 7, 12, and 31 July and 18 August 
2017, and 24 and 25 July 2018—under clear-sky conditions.

Collection of hyperspectral images and irradiance 
measurements
The Resonon PIKA II VNIR hyperspectral imaging camera (Resonon 
Inc., Bozeman, MT, USA) mounted on a phenotyping platform (Fig. 1A) 
was used to collect hyperspectral images for each plot. The camera used 
a push-broom design to scan each tobacco plot with 640 spatial channels 
at a height of 1.6 m from the ground. Image acquisition was controlled 
using the SpectrononPro software (Resonon Inc.) and completed within 
the time window between 10.00 h and 14.30 h local time under clear-
sky conditions. Collected images had a spectral resolution of 2.1 nm (240 
spectral bands in total from 400 nm to 900 nm, with a signal to noise 
ratio of ~300) and a spatial resolution of 0.1 mm at nadir. For re#ectance 
conversion, a 99% re#ective white panel (Labsphere Inc., North Dutton, 
NH, USA) was mounted horizontally above the top of the plant canopy 
and in the "eld of view of the camera (Fig. 1A). Prior to each image 
scan, camera integration time was carefully set to ~15% below satur-
ation using the radiance signal from the white panel. The hyperspectral 
camera was calibrated spectrally (the camera’s sensitivity to light inten-
sity), radiometrically (conversion of image digital numbers to radiance), 
and spatially (consistent spectral response curves among di!erent spatial 
channels) prior to collection of plot images.

The downwelling irradiance measurements were made using a spec-
trometer (Flame VIS-NIR, Ocean Optics Inc., Largo, FL, USA) that was 
calibrated radiometrically and spectrally with a standard light source 
(HL-3p-CAL, Ocean Optics Inc.). The spectrometer covered the spectral 
region from 350 nm to 1000 nm with a spectral resolution of ~0.35 nm. 
A cosine corrector was attached to the "ber of the spectrometer to have a 
"eld view of 180°, facing toward the sky to record the irradiance spectra 
of the sunlight. The spectrometer and its associated accessories and mini-
aturized computers were installed in a temperature-controlled enclosure 

Fig. 1. The phenotyping platform (A) mounted with the PIKA II camera (400–900 nm) and a temperature-controlled enclosure (B) with the Flame VIS-NIR 
spectrometer (C) installed. The bare optic fiber of the Flame spectrometer was attached to a cosine corrector, facing toward the sky to record irradiance 
spectra of sunlight.
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(Fig. 1B) at the edge of the tobacco plots. For each measurement day, the 
irradiance spectra were acquired at a frequency varying from 20 Hz to 
50 Hz (depending on the sunlit intensity) throughout the time period 
of hyperspectral image collections. Hyperspectral images and irradiance 
spectra were matched based on time stamps for calculating SIF and SIF 
yield. The irradiance measurements (~0.35 nm spectral resolution) were 
resampled to 2.1 nm spectral resolution using the spline interpolation 
method.

Gas exchange measurements
Photosynthetic capacities, Vcmax and Jmax, were determined from re-
sponse curves of photosynthesis (A) to a series of intercellular CO2 
concentrations (Ci), namely 400, 200, 50, 100, 300, 400, 600, 900, 
1200, 1500, 1800, and 2000 μmol mol–1, using a mathematical model 
(Farquhar et  al., 1980; Bernacchi et  al., 2003; Sharkey et  al., 2007). 
These A/Ci response curves were recorded by a portable infrared gas 
analyzer (LI-6800, LICOR Biosciences, Lincoln, NE, USA) within 
30 min of image acquisition on three sunlit, last fully expanded leaves 
per plot. Prior to the CO2 response analysis, light response curves were 
carried out on all genotypes used in this study to determine the light 
saturation point. Subsequently PAR inside the chamber head was set 
at 1800  μmol m–2 s–1 to ensure saturating light conditions for each 
CO2 response curve, allowing con"dence in true Jmax under the given 
conditions.

Leaf temperatures of these three leaves were measured with an FLR 
TG54 handheld IR gun, and the air temperature of the gas exchange 
cuvette was set to the mean of the three temperature values. Inside the 
gas exchange chamber, relatively humidity was controlled to 65%. Prior 
to each A/Ci curve, leaves were acclimated to chamber conditions for a 
minimum of 160 s. The minimum and maximum wait time before each 
individual measurement of a response curve was 160 s and 200 s, respect-
ively. Mesophyll conductance (gm) was calculated using the linear de-
pendence of gm on temperature with known values for tobacco at 25 °C 
reported in von Caemmerer and Evans (2015). Finally, a total of 108 and 
81 leaf level values of Vcmax and Jmax, respectively, were collected. Vcmax 
and Jmax values were then averaged from three leaves per plot for 36 and 
27 total plots, respectively. One of the genetically modi"ed tobacco cul-
tivars, double Rubisco knockdown plants (SSuD) used in this study, was 
not electron transport limited under any conditions (Meacham-Hensold 
et al., 2019), leading to fewer measurements of Jmax than of Vcmax.

Analysis techniques
Figure  2 outlines the "ve steps (i.e. 1–5) for retrieving SIF and SIF 
yield on a per-pixel basis. These data analysis steps were based on time-
synchronized hyperspectral images and irradiance spectra collected in 
selected clear-sky days of measurements. The "rst part of the data analysis 
(steps 1–3) consisted of radiometric calibration of raw images to radiance 
images and then the classi"cation of radiance images for deriving re-
#ectance images. The second part included estimations of SIF data using 
downwelling irradiance spectra and hyperspectral images, and estimations 
of SIF yield using SIF data and PAR (400–700 nm), for each plot. These 
SIF and SIF yield data at plot level were then correlated with Vcmax and 
Jmax to evaluate whether SIF/SIF yield would be a good proxy for photo-
synthetic capacities.

Image processing
The conversion of raw hyperspectral images (digital numbers with a 
12-bit depth) to re#ectance images of sunlit leaves was implemented in 
a customized programming system coded in Python (Python Software 
Foundation, https://www.python.org/) developed by Fu et  al. (2020). 
First, digital numbers from raw images were converted to absolute spec-
tral radiance (unit: w m–2 sr–1 nm–1) using calibration "les provided by the 
instrument company. Second, an unsupervised classi"cation algorithm—
the k-means clustering algorithm—was applied to radiance images for 

classi"cation. In the clustering algorithm, the number of clusters was set 
at six. Among these clusters, the one with the highest mean radiance 
value was identi"ed as a white panel. As the re#ectance spectrum of the 
white panel was known, re#ectance images of all clusters were calculated 
using Equation 1.

R =
Sclusters
Swhite

∗ Rwhite (1)

where Sclusters and Swhite are radiance values from each cluster and the 
white panel, respectively, Rwhite refers to the re#ectance of the white panel 
calibrated and provided by Labsphere, and R is the absolute re#ectance 
of each cluster.

With a normalized di!erence vegetation index (NDVI) value (as 
shown in Equation 2; Tucker, 1979) >0.1, two clusters—sunlit leaves and 
leaves in shadow—were clearly delineated. The cluster of sunlit leaves 
was identi"ed further as it had a higher mean spectral radiance than the 
other cluster.

NDVI =
R770−780 nm − R650−660 nm

R770−780 nm + R650−660 nm
 (2)

where R770–780 nm and R650–660 nm refer to mean re#ectance values within 
770–780 nm and 650–660 nm, respectively. Only spectra of sunlit leaves 
were used for SIF estimations and the regression analysis of SIF/SIF yield 
with photosynthetic capacities (Vcmax and Jmax).

Retrieval of SIF and SIF yield
With the time-synchronized irradiance measurements and hyperspectral 
radiance images, SIF data were computed using the improved Fraunhofer 
line discrimination (iFLD) method (Alonso et  al., 2008). The iFLD 
method relies on two radiance measurements, one inside and one outside 
a Fraunhofer line (761 nm in this study, O2 A-band), and apparent cor-
rection factors, as shown in Equation 3.

SIF =
αRE (λout) ∗ L (λin)− E (λin) ∗ L (λout)

αRE (λout)− αFE (λin)
 (3)

where E(λ out) and E(λ in) refer to irradiance signals measured outside 
and inside the dark line (i.e. 761 nm) from the FLAME VIS-NIR spec-
trometer, and L(λ in) and L(λ out) are radiance signals measured inside and 
outside the dark line provided by the PIKA II hyperspectral camera. 
The two coe%cients α R and α F are used to characterize variations in 
the #uorescence and the re#ectance values inside and outside the ab-
sorption bands following Alonso et al. (2008). In this study, λ in and λ out 
were set to 761 nm and 754 nm, respectively, to facilitate estimation 
of SIF. Only SIF from the O2 A-band is estimated using Equation 3 
since the iFLD method cannot accurately estimate SIF from the O2 
B-band (or at least the estimation accuracy for the O2 B-band is not as 
good as that for the O2 A-band). According to Alonso et al. (2008), the 
SIF retrieval error for the O2 A-band is in the order of 10–2. Further 
details of the iFLD method can be found in Alonso et al. (2008). To 
partly remove the scan angle e!ects of the hyperspectral camera (scan 
angle of ±46.1°), only pixels within the angle view of ±15° (near-nadir 
and nadir view) were used. The solar zenith angle was <35° over the 
study period. Although the spectral "tting methods (e.g. Meroni and 
Colombo, 2006) have commonly been used to estimate SIF recently, 
in this study the spectral resolution (2.1 nm with a signal to noise ratio 
of ~200) of the PIKA II hyperspectral camera limits the use of such 
methods (since only six irradiance and radiance measurement pairs 
available around 761 nm are not enough for spectral "tting). The use of 
the iFLD method to estimate SIF has been shown in recent studies that 
have suggested reasonable SIF retrievals can be achieved using broader 
spectral bandwidth (i.e. ~2 nm spectral sampling interval, signal to noise 
ratio ~300) (Damm et al., 2011; Camino et al., 2019).

After the SIF calculation, the SIF yield was estimated following 
Equation 4.
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




APAR = PAR ∗ fAPAR
fAPAR = NDVI

PAR =
700´
400
E (λ) dλ

SIFy = SIF/APAR

 (4)

where SIFy refers to the SIF yield (also known as apparent SIF yield), 
PAR is photosynthetically active radiation integrated from 400 nm to 
700 nm using the downwelling irradiance measurements, APAR is ab-
sorbed photosynthetically active radiation, fAPAR is the ratio between 

APAR and PAR. In this study, NDVI (Equation 2) was used as a proxy 
of fAPAR.

Regression analysis
SIF/SIF yield values at plot level were correlated with the corresponding 
Vcmax and Jmax using the linear regression analysis. The performance of 
the regression model to predict Vcmax and Jmax was evaluated based on 
the coe%cient of determination (R2) and RMSE. The SIF and SIF yield 
data were also grouped by their time proximity for regression analysis, 
namely 6, 7, and 12 July 2017 for group 1 (14 measurements for Vcmax 

Fig. 2. The data analysis flowchart for retrieving SIF and SIF yield using time-synchronized hyperspectral images and irradiance spectra for each selected 
clear-sky day of measurements. SIF, solar-induced fluorescence; PAR, photosynthetically active radiation (400–700 nm).
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and 11 for Jmax at plot level), 31 July and 18 August 2017 for group 2 (12 
measurements for Vcmax and 8 for Jmax at plot level), and 24 and 25 July 
2018 for group 3 (10 measurements for Vcmax and 8 for Jmax) at plot level). 
The Pearson’s correlation coe%cient (CC) was also used to analyze the 
relationship between Vcmax and Jmax.

Results
SIF and SIF yield as proxies of Jmax

Both SIF and SIF yield were correlated with photosyn-
thetic capacity Jmax using regression analysis. When SIF data 
of all measurement days were considered for predicting 
Jmax, the regression performance was signi"cant (R2=0.10, 
RMSE=46.35 μmol m–2 s–1; Fig. 3A). Using SIF yield of all 
measurement days, however, the regression analysis was not 
statistically signi"cant (P-value >0.05; R2=0.00; Fig. 3B). When 
observations were binned by measurement days (i.e. group 1: 6, 
7, and 12 July 2017; group 2: 31 July and 18 August 2017; and 
group 3: 24 and 25 July 2018), SIF yield exhibited a stronger 
relationship, compared with SIF, with photosynthetic capacity 
Jmax (Fig. 3). More speci"cally, the regression of Jmax using SIF 
yield showed an R2 of 0.62 and RMSE of 11.88 μmol m–2 s–1 
for group 1, an R2 of 0.85 and RMSE of 13.51 μmol m–2 s–1 
for group 2, and an R2 of 0.92 and RMSE of 15.23 μmol m–2 
s–1 for group 3 (Fig. 3B). In contrast, regression of Jmax using 
SIF generally showed a smaller R2 (<0.25) and greater RMSE 
(>17 μmol m–2 s–1). In addition, it was found that the relation-
ship between SIF and Jmax was not consistent over time as both 
negative and positive correlations were observed for binned 
groups (Fig. 3A). Figure 3B shows that the best performance 
of the regression model to predict Jmax was achieved for group 
3 (R2=0.92, RMSE=15.23 μmol m–2 s–1).

SIF and SIF yield as proxies of Vcmax

Figure  4 shows that Vcmax and Jmax were highly correlated 
within each binned group and among all data groups. When 
measurements of all days were used, variations in Jmax could 
explain 75% of variance in Vcmax (with an overall CC of 
0.86; Fig. 4). When measurements were binned by groups, a 

statistically signi"cant relationship between Jmax and Vcmax was 
still observed, namely a CC of 0.61 for group 1, a CC of 0.90 
for group 2, and a CC of 0.76 for group 3. In addition, the 
slope of the regression between Jmax and Vcmax only exhibited a 
small variation ranging from 0.95 to 1.37 among data groups. 
This strong relationship between Jmax and Vcmax allowed fur-
ther correlation between SIF/SIF yield and Vcmax, as shown 
in Fig. 5.

Similar regression results were observed for Vcmax as com-
pared with Jmax. When SIF yields of all measurement days were 
considered, the regression analysis yielded an R2 of 0.22 and 
RMSE of 82.66  μmol m–2 s–1 for predicting Vcmax (Fig.  5). 
Using SIF of all measurement days, the prediction performance 
for Vcmax was relatively worse (R2=0.13, RMSE=88.03 μmol 
m–2 s–1; Fig. 5). When observations were binned as groups, SIF 
yield exhibited a stronger relationship, compared with SIF, 
with photosynthetic Vcmax (Fig. 5). More speci"cally, regres-
sion analysis of Vcmax yielded an R2 of 0.71 and RMSE of 
46.86  μmol m–2 s–1 for group 1, an R2 of 0.72 and RMSE 
of 49.32  μmol m–2 s–1 for group 2, and an R2 of 0.87 and 
RMSE of 30.29 μmol m–2 s–1 for group 3 (Fig. 5B). Regression 
of Vcmax using SIF generally showed a smaller R2 (<0.3) and 
greater RMSE (>70  μmol m–2 s–1 for Vcmax predictions). In 
addition, it was found that the relationship between SIF and 
Vcmax was not consistent over time as both negative and posi-
tive correlations were observed for binned groups (Fig. 5A). 
Still, the best performance of the regression model to predict 
Vcmax was achieved for group 3 (Fig. 5B).

Explanation for the observed negative relationship 
between SIF yield and photosynthetic capacities

Analysis of all data combined, compared with those for binned 
groups, showed that SIF, in relative to SIF yield, has a relatively 
worse performance in estimating Vcmax or Jmax. This "nding 
was reasonable as SIF data only exhibited a small variance 
among all three time periods and for each of the three time 
periods (Fig. 6). Within each time category (or data group), a 
strong observed negative relationship between photosynthetic 
capacity and SIF yield (Figs 3, 5) suggested that Vcmax and Jmax 

Fig. 3. The relationship between SIF and Jmax (A), and the relationship between SIF yield and Jmax (B). The shaded area shows the 95% confidence 
interval of the regression line.
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were likely to be positively related to APAR (or NDVI×PAR), 
explaining the linkage between APAR and GPP at various 
spatial and temporal scales (Farquhar et  al., 1980; Viña and 
Gitelson, 2005; Miao et al., 2018; Yang et al., 2018). This posi-
tive relationship, as evidenced by Fig. 7, was consistent with 
that identi"ed in previous studies relating photosynthetic cap-
acities to various types of vegetation indices such as NDVI, 
structure insensitive pigment index, and ratio index (Zhang 
et al., 2018; Fu et al., 2020). Fu et al. (2020) showed that the 
NDVI-like index, if appropriately calculated with optimized 
combinations of spectral bands, could be used as a strong indi-
cator (with a squared rank CC close to 0.8) for Vcmax and Jmax 
using a similar dataset (with 11 tobacco cultivars rather than 
10 cultivars) as in this study. Thus, the observed negative rela-
tionship between SIF yield and photosynthetic capacities was 
largely attributed to the well-known positive relationship be-
tween APAR (or NDVI×PAR) and photosynthetic capacities 
(based on Equation 4 in which APAR is the denominator). 

More speci"cally in this study, APAR (or NDVI×PAR) on 
average explained ~70% variation of Vcmax and ~35% vari-
ation of Jmax (as supported by the average R2 values shown in 
Fig. 7A and B).

Discussion
Although SIF is not a major pathway for de-excitation of 
chlorophyll, the results in Figs 3 and 5 suggested that variation 
in SIF yield (rather than SIF itself) could be used to examine 
the photosynthetic variable Jmax and then Vcmax provided that 
there is a strong relationship between the two variables. The 
observed negative relationship in this study provided an alter-
native way to understand photosynthetic physiology at plot 
level, in addition to the well-known positive relationship be-
tween GPP and SIF reported in previous studies (Frankenberg 
et al., 2011; Sun et al., 2017; Yang et al., 2017; Yang et al., 2018). 
Other de-excitation pathways including NPQ that dissipates 
excess energy to heat through molecular vibrations, along with 
SIF, compete with the pathway through which photochemistry 
can occur at the reaction centers (Müller et al., 2001). Even 
without quanti"cation of NPQ, the results presented (Fig. 3) 
in this study supported our initial hypothesis that low photo-
synthetic capacity (i.e. Jmax) can lead to an increase in absorbed 
light energy to SIF for de-excitation for plants at saturated 
light. Here the SIF yield was a relative term (as normalized 
by the absorbed PAR), and the negative relationship did not 
contradict the previous "nding of the positive relationship be-
tween GPP and SIF. It was also found that the relationship 
between SIF yield and Jmax was generally stronger than that 
between SIF yield and Vcmax (except for group 1) when data 
were binned by groups. This is understandable given the close 
link between SIF and electron transport, and the challenges 
in quantifying Rubisco-dependent processes (Vcmax) with a 
passive #uorescence detection (i.e. SIF). This "nding corrob-
orated our initial suggestion that SIF yield could also be used 
to understand the rates of CO2 "xation only if the correlation 
between Jmax and Vcmax holds.

Compared with SIF or SIF yield, re#ectance spectra (or 
hyperspectral data) have been more commonly used to estimate 

Fig. 4. The relationship between Vcmax and Jmax for each binned time 
group and among all time groups. The shaded area shows the 95% 
confidence interval of the regression line (i.e. using Jmax to predict Vcmax). 
CC refers to the Pearson’s correlation coefficient between Vcmax and Jmax.

Fig. 5. The relationship between SIF and Vcmax (A), and the relationship between SIF yield and Vcmax (B). The shaded area shows the 95% confidence 
interval of the regression line.
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photosynthetic capacities in plant breeding programs to harness 
natural and/or arti"cially modi"ed variations in photosyn-
thesis for improved crop production (Serbin et al., 2012; Silva-
Perez et al., 2017; Yendrek et al., 2017; Fu et al., 2019, 2020; 
Meacham-Hensold et al., 2019). The studies using re#ectance 
to estimate photosynthetic capacities may be attributable to the 
fact that re#ectance is far easier to retrieve than SIF/SIF yield. 
Our previous study using a similar dataset suggested that the 
performance of hyperspectral data to estimate photosynthetic 
capacities was largely driven by measurements over di!erent 
days (i.e. temporal variations in photosynthetic capacities; Fu 
et  al., 2020). As such, the prediction model cannot be built 
until the last day of measurements, greatly limiting the under-
standing of variations of photosynthesis among cultivars within 
the plant growth cycle. The identi"ed relationship between 
SIF yield and photosynthetic capacities within each group 
of measurement days in Figs 3 and 5 provides an alternative 
yet promising mechanistic way to understand photosynthetic 

variations among wild and genetically modi"ed cultivars. In 
particular, statistical models to predict photosynthetic capaci-
ties can be built with measurements over a short-term period, 
ranging from 2 d to 18 d, as shown in Figs 3 and 5. However, 
the optimal time interval used for binning measurements is not 
clear based on the current datasets, and further "eld measure-
ments are needed to unravel whether environmental variables 
such as temperature and precipitation and phenological stages 
may also impact the binning interval. As the regression be-
tween SIF yield and Jmax for all the three groups is statistically 
signi"cant at a P-value <0.05, it is expected that the temporal 
interval for binning data may not greatly exceed 18 d, though 
further data pairs are needed to test this expectation.

The performance of SIF yield to predict photosynthetic 
capacities was similar to, if not better than, that of plant traits 
(such as leaf nitrogen and chlorophyll content) to estimate 
photosynthetic capacities (as shown in our own study; Fu et al., 
2020). Thus, the SIF yield as a proxy for photosynthetic cap-
acities can be used as an alternative pre-screening technique 
in high-throughput phenotyping of crop trials. This technique 
is useful particularly when plant traits such as leaf nitrogen 
and chlorophyll content are decoupled from photosynthetic 
capacities through genetic engineering for improved photo-
synthesis (Long et al., 2015; Ort et al., 2015). In these cases, al-
though plant traits may be retrieved from re#ectance spectra at 
a high accuracy, the use of these plant traits such as leaf nitrogen 
and chlorophyll content as proxies for photosynthetic capaci-
ties could be problematic. This also makes the case for the ra-
diative transfer models such as PROSEPCT (Jacquemoud and 
Baret, 1990) and SCOPE (van der Tol et  al., 2009) that are 
used for estimating plant traits and photosynthesis with inputs 
of re#ectance spectra. The negative relationship between SIF 
yield and photosynthetic capacities presented in this study thus 
needs further examination to facilitate a better understanding 
between plant traits and photosynthesis in a more mechanistic 
way than possible using radiative transfer models.

The current study suggested that plant structure, asso-
ciated with light capturing (i.e. APAR; e.g. Musavi et  al., 
2016), played an important role in relating SIF yield to 
photosynthetic capacities, which is consistent with previous 

Fig. 7. The relationship between APAR and (A) Jmax and between APAR and (B) Vcmax.

Fig. 6. The statistical distribution of SIF within each of the three time 
periods (D1–D3) and among all three time periods (D4), 6, 7, and 12 
July 2017, 31 July and 18 August 2017, and 24 and 25 July 2018. The 
numbers above each box show the mean and SD.
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studies suggesting a better correlation of GPP with a struc-
ture parameter, NIRv, than SIF (Badgley et al., 2017, 2019). 
The correlation of SIF yield with both Vcmax and Jmax was at-
tributed to the fact that Vcmax and Jmax were tightly coupled 
(Wohlfahrt et al., 1999; Kattge et al., 2009). As a caveat, the 
presented approach may not work for crop cultivars and 
plants in which the correlation between Vcmax and Jmax is 
likely to be shifted by leaf nitrogen, phosphorus, and speci"c 
leaf area (Walker et al., 2014). Plus, recent e!orts are being 
made to redesign photosynthetic process that may exhibit 
uncoupled correlations between Vcmax and Jmax (Ort et al., 
2015).

Despite these promising results in using SIF yield as a proxy 
for photosynthetic capacities, the negative relationship shown 
in Figs 3 and 5 needs to be further examined with di!erent 
cultivars and food crops such as maize and soybean. In this 
study, the calculation of SIF and SIF yield was simpli"ed, for 
example, using NDVI as a proxy for the fAPAR, and the iFLD 
method for calculating SIF. For food crops, NDVI may su!er 
saturation at fAPAR beyond 0.7, and indices such as red-edge 
NDVI (Viña and Gitelson, 2005) and wide dynamic range 
vegetation index (Gitelson, 2004) may be better to approach 
fAPAR at high biomass density. However, this study showed 
a similar magnitude of SIF and SIF yield compared with pre-
vious studies (e.g. van der Tol et  al., 2014; Frankenberg and 
Berry, 2018).

The use of the iFLD method to estimate SIF can be re"ned 
in the future. Recent studies have suggested that reasonable 
SIF retrievals can be achieved using a broader spectral band-
width, similar to the PIKA II camera with a ~2 nm spectral 
sampling interval and a signal to noise ratio of ~300 (Damm 
et al., 2011; Camino et al., 2019). Admittedly, biases in the 
SIF retrievals may arise from the broad spectral resolution; 
however, it is believed that consequences would be negli-
gible for high-throughput phenotyping since the focus is on 
relative spatiotemporal variability rather than absolute SIF 
values (Camino et  al., 2019). In addition, SIF signals were 
obtained at a similar temperature over the study period (be-
tween 75 °F and 100 °F), removing impacts of temperature 
variations on the camera. According to the temperature ex-
periment conducted within Resonon Inc. (data cannot be 
shared publicly), the shift in radiance caused by temperature 
e!ects is <0.11 w sr–1 μm–1 m–2 between 75 °F and 100 °F. 
This shift in radiance incurred by temperature is ~7% of 
SIF values (as SIF values were generally larger than 1.6 w 
sr–1 μm–1 m–2), suggesting that temperature impacts on SIF 
estimations would be minimal in this study. Future atten-
tion can be paid to developing new phenotyping systems 
and using the spectral "tting methods to quantify SIF and 
SIF yield with higher accuracy. Furthermore, similar to pre-
vious remote sensing-based studies, the provision of re#ect-
ance and SIF from hyperspectral cameras in this study may 
su!er biases induced by plant geometry and structure, leaf 
angle distribution, seasonal characteristics, and background 
soil. Thus, e!orts are still needed to (partly) eliminate these 
biases to re"ne the observed relationship between SIF/SIF 
yield and photosynthesis.

Conclusion

Accurate quanti"cation of photosynthetic information in 
a high-throughput manner is of critical importance to har-
ness variation in photosynthetic capacity towards increases 
in crop yield. Although re#ectance spectra (e.g. machine 
learning+re#ectance spectra/spectral indices) have been 
widely used for quantifying photosynthetic capacity, it remains 
a question whether SIF-related signals would be a good proxy 
for photosynthetic capacities. In this study, both SIF and SIF 
yield were evaluated as a potential indicator for photosynthetic 
capacity. The results suggested that SIF yield was a better proxy 
than SIF to estimate photosynthetic capacities Vcmax and Jmax. 
More speci"cally, it was observed that on average SIF yield 
had the ability to explain ~80% variation in Jmax and ~75% 
variation in Vcmax. The observed negative relationship between 
SIF yield and photosynthetic capacity was largely attributed 
to the positive relationship between APAR (i.e. NDVI×PAR) 
and photosynthetic capacity. The use of SIF yield as a proxy 
for photosynthetic capacity thus provides an alternative that 
can supplement existing approaches in estimating photosyn-
thesis at plot level. Future work can be directed to explore 
internal mechanisms at the leaf/molecular level to disentangle 
the pathways of photochemistry, NPQ, and SIF that help ex-
plain the observed negative relationship between SIF yield and 
photosynthetic capacity.
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