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Highlight 

High-throughput phenotyping of photosynthesis is critical to continued improvements in crop 

yield. We review remote and proximal sensing-based phenotyping techniques and outline 

lessons, challenges, and opportunities facing photosynthesis high-throughput phenotyping. 
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Abstract 

 

Gas exchange techniques revolutionized plant research and advanced understanding, 

including associated fluxes and efficiencies, of photosynthesis, photorespiration, and 

respiration of plants from cellular to ecosystem scales. These techniques remain the gold 

standard for inferring photosynthetic rates and underlying physiology/biochemistry, although 

their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the 

number of gas exchange systems available and the number of personnel available to operate 

the equipment. Remote sensing techniques have long been used to assess ecosystem 

productivity at coarse spatial and temporal resolutions, and advances in sensor technology 

coupled with advanced statistical techniques are expanding remote sensing tools to finer 

spatial scales and increasing the number and complexity of phenotypes that can be extracted. 

In this review, we outline the photosynthetic phenotypes of interest to the plant science 

community and describe the advances in high-throughput techniques to characterize 

photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based 

experiments or breeding trials. We will accomplish this objective by presenting six lessons 

learned thus far through the development and application of proximal/remote sensing-based 

measurements and the accompanying statistical analyses. We will conclude by outlining what 

we perceive as the current limitations, bottlenecks, and opportunities facing HTP of 

photosynthesis. 

 

Keywords: photosynthesis, field phenotyping, gas exchange, remote sensing, plant breeding, 

food security 
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Introduction 

Photosynthesis accounts for the largest flux associated with the global carbon cycle 

(Friedlingstein et al., 2019). Photosynthetic rates vary extensively among species and plant 

functional types; the within species rates also vary over spatial and temporal scales associated 

with stage of development and changes in light, temperature, water and nutrient availabilities 

(Beer et al., 2010; Thornley, 2002). Photosynthesis is the entry point of carbon into 

vegetation, and therefore is a critical determinant of food production. Anthropogenic 

activities are driving global changes, which have profound impacts on all aspects of 

ecosystem functioning including photosynthetic rates (Fernández-Martínez et al., 2019). A 

growing population is increasing demands for agricultural products, requiring a doubling of 

yields by 2050 (Valin et al., 2014). However, current rates of yield improvement fall short of 

this goal (Long et al., 2015; Ray et al., 2013) and are likely to diminish with continued global 

climate change. For example, global temperatures and atmospheric CO2 concentrations are 

rising faster than worst-case predictions (Schwalm et al., 2020), and these global changes are 

shown to strongly influence photosynthetic rates. Warming, regardless of whether from 

season-long heating (Ruiz-Vera et al., 2013; Ruiz-Vera et al., 2015; Wang et al., 2020) or 

short duration, high intensity heat waves (Siebers et al., 2017; Siebers et al., 2015; Thomey et 

al., 2019), has shown to have a detrimental impact on crop production, even in the presence 

of elevated atmospheric CO2 concentration.  

 

The need to meet agricultural demands extends from current food shortages in many regions 

of the planet (Pawlak and Kołodziejczak, 2020) to anticipated future global shortages (Long 

et al., 2015; Ray et al., 2013). Focused breeding efforts that overcome many of the existing 

challenges are critical to avoid these food shortages. Improving crop production requires the 

ability to identify the best varieties for advancement which have historically included the 
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highest yielding lines, but also a wide range of other phenotypes linked to canopy 

architecture, lodging tolerance, or protein content. However, these selection criteria are 

generally measured at physiological maturity or after crop senescence and do not consider 

incremental changes in crop phenotype throughout the growing season. While these metrics 

are responsible for significant advancements in historic crop production (Smith et al., 2014; 

Specht et al., 2014), the impact of these breeding techniques is diminishing, or has already 

diminished, entailing new strategies to increase crop productivity. High-throughput 

phenotyping (HTP) techniques can resolve variation in a wide range of crop traits at shorter 

time intervals than traditional measurements (Araus and Cairns, 2014; Bai et al., 2016; Deery 

et al., 2014; Liu et al., 2020; Mir et al., 2019; Roitsch et al., 2019) and can ultimately lead to 

better understanding of the incremental changes in crop growth and physiology compared to 

season-integrated composite traits measured after full canopy development or crop harvest. 

 

The mechanistic understanding of photosynthesis is based on decades of measurements at the 

organelle to plant scales using gas exchange techniques. Key insights from this research have 

led to the understanding that photosynthesis is inefficient at leaf to canopy scales, e.g., the 

efficiency to convert the intercepted radiation into biomass is only around one fifth of the 

theoretical maximum for both C3 and C4 crop species (Zhu et al., 2010). Thus, overcoming 

these inefficiencies can lead to improved crop yields (Long et al., 2015; Ort et al., 2015). 

However, measuring photosynthesis over a range of spatial and temporal scales is 

challenging given many constraints. Leaf level measurements using gas exchange techniques 

are too slow for phenotyping traditional breeding trials even when implementing techniques 

that rapidly accelerate data collection (Stinziano et al., 2019). Even if throughput of leaf level 

measurements is improved, agronomic traits are based on canopy-scale processes and 

therefore require canopy-scale measurements. Direct measurements of canopy photosynthesis 
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are impractical using enclosures, and therefore micrometeorological, proximal sensing, or 

remote sensing techniques need to be employed. 

 

In this review we present high-throughput techniques currently used or in development that 

estimate photosynthesis from leaf to canopy scales with spectral regions between 350 and 

2500 nm. Thus, this study will not include summary of methods in quantification of 

photosynthesis or photosynthesis related parameters such as evapotranspiration or stomatal 

conductance using thermal sensing techniques (or beyond). Neither does this study serve as 

an exhaustive search of the literature in this field. Following the overview of techniques in 

HTP of photosynthesis, we outline six lessons learned thus far from the development and 

application of these techniques, including the use of various sensors, statistical analyses, and 

limitations. Within each lesson, we outline the current understanding associated with this 

lesson as well as challenges that must be overcome before widespread adoption is likely for 

breeders and/or researchers.  

 

Overview of HTP techniques for measuring in situ photosynthesis and photosynthetic 

physiology 

 

Despite the benchmark photosynthesis measurements provided by various gas exchange 

techniques at the leaf level (Long and Bernacchi, 2003; Stinziano et al., 2019), the approach 

is low-throughput (further details can be found in Section 1, Appendix S1) and has been a 

bottleneck to the development of crop cultivars with enhanced photosynthesis (Fu et al., 

2019; Furbank and Tester, 2011). As such, various HTP platforms have been designed to 

cope with this low-throughput challenge (Bai et al., 2019; Bandopadhyay et al., 2020; 

Meacham-Hensold et al., 2020; Salter et al., 2018; Zhang et al., 2020). These platforms, set 
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up in either indoor or outdoor settings, are mounted with commercial sensors such as 

hyperspectral and fluorescence radiometers, providing a non-invasive and efficient alternative 

to characterize plant growth and photosynthesis over time. So far, these techniques have had 

a great impact on understanding of photosynthesis and photosynthetic physiology from leaf to 

canopy scales and thus on efforts to improve crop yields through photosynthesis (Siebers et 

al., 2021). In this section, we provide an overview of proximal/remote sensing techniques 

used for HTP of photosynthesis/photosynthetic physiology at both leaf and canopy scales 

(Figure 1). 

 

Solar Induced Fluorescence 

Chlorophyll fluorescence represents light re-emitted by excited chlorophyll molecules and 

competes with two other pathways, photochemistry and non-photochemical quenching 

(NPQ), for de-excitation (Porcar-Castell et al., 2014). It has emerged as an important tool to 

probe the photosynthetic apparatus due to its close and functional linkage with electron 

transport at the molecular level (Genty et al., 1989; Maxwell and Johnson, 2000). 

Chlorophyll fluorescence is largely measured in an active way using the pulse amplitude 

modulation (PAM) fluorometry, which can selectively close and open photosystem II (PSII) 

reaction centers to understand the photosynthetic quantum yields of absorbed photons for 

individual plant leaves (Schreiber et al., 1995). The widespread use of PAM fluorescence for 

quantifying photosynthesis further stimulates interests to passively detect chlorophyll 

fluorescence under solar illumination (Troy et al., 2017), known as solar-induced 

fluorescence (SIF), beyond the leaf scale using remote sensing techniques. Because the SIF 

signal is small compared to the radiation flux reflected by a plant canopy under sun 

illumination, SIF is more difficult to retrieve compared to PAM-derived fluorescence. 

However, great achievements have been made towards the development of methods used for 
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decoupling SIF signals from reflected radiance (Meroni et al., 2009; Mohammed et al., 

2019). In addition, the increasing availability of SIF imaging (Pinto et al., 2016; Rascher et 

al., 2015) or sensor systems, e.g., FluoSpec by Yang et al. (2018)., also contributes to the 

popularity of SIF in characterizing plant photosynthesis at various scales.  

 

As improving photosynthesis is considered critical to enhanced crop yield (Long et al., 2015; 

Ort et al., 2015), SIF has been increasingly used for HTP of photosynthetic physiology 

(Zavafer et al., 2020). Camino et al. (2019) showed that combined SIF and hyperspectral 

images, obtained through an airborne platform, could be used to estimate the maximum 

carboxylation rate (Vcmax) for both rainfed and irrigated wheat trials. Using SIF obtained from 

a ground-based phenotyping platform, Jiang et al. (2020) characterized the effective quantum 

yield of PSII (     ) and electron transport rate (ETR) for cotton cultivars. In their study, the 

estimated       was highly correlated to that provided by a PAM fluorometer. Based on time-

synchronized hyperspectral and irradiance measurements, Fu et al. (2021) derived the inverse 

relationship between solar-induced fluorescence yield and photosynthetic capacity (i.e., Vcmax 

and the maximum electron transport rate, Jmax) for tobacco cultivars at the canopy level. 

These studies were stimulated by previous utility of satellite-based SIF as a proxy of the 

gross primary productivity (GPP) at ecosystem and global scales (Frankenberg et al., 2011; 

Guan et al., 2016; Guanter et al., 2014). Unlike satellite-based studies, HTP work aims to 

detect subtle variations in photosynthetic performance, for example among different crop 

cultivars, management practices, or environmental conditions. As SIF emissions are largely 

determined by absorbed photosynthetically active radiation (APAR) (Walther et al., 2016), 

comparison of SIF and SIF related parameters from different crop cultivars requires 

standardization, accounting for plant 2D or 3D architecture in assessing the photosynthetic 

performance. Combined measurements of SIF and environmental variables, such as 
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temperature and vapor pressure deficit, are also necessary in fully uncovering the functional 

relationship between SIF and SIF related parameters and crop photosynthesis. 

 

Laser Induced Fluorescence Transient 

Compared to passive SIF measurements, active chlorophyll fluorescence observations such as 

PAM measurements are more commonly used to quantify photosynthetic efficiency, 

particularly in the context of HTP (Pieruschka et al., 2012). One of the techniques for active 

chlorophyll fluorescence measurements is laser induced fluorescence transient (LIFT), which 

uses sub-saturating pulses to probe PSII based on fast repetition rate (FRR) fluorometry 

(Kolber et al., 2005; Kolber et al., 1998). The LIFT system can be operated at a greater 

distance from the leaf compared to the PAM approach that relies on the application of 

saturating light flashes at close proximity to photosynthetically active tissue (Genty et al., 

1989) for quantifying chlorophyll fluorescence yield. The LIFT approach has demonstrated 

potential to bridge the gap in photosynthetic measurements between leaf and canopy levels 

(Raesch et al., 2014; Wyber et al., 2018). Evidence suggests LIFT-based chlorophyll 

fluorescence measurements correlate well with PAM-based photosynthetic parameters 

(Kolber et al., 2005) and can be used to quantify the ETR from the primary quinone acceptor 

(QA) to the plastoquinone (PQ) pool (Osmond et al., 2019; Osmond et al., 2017).  

 

Since the first field observations of laser-induced fluorescence (Measures et al., 1973), new 

generations of active LIFT fluorometers have been developed and used for plant phenotyping 

(Ananyev et al., 2005; Keller et al., 2019a; Kolber et al., 2005). Keller et al. (2019a) derived 

the maximum chlorophyll fluorescence induced by FRR flash and the QA reoxidation 

efficiency parameters for phenotyping of photosynthesis from the LIFT-based ETR. 

Following Keller et al. (2019a), Keller et al. (2019b) showed that the LIFT-based parameters 
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could help quantify photosynthetic variations induced by various environment conditions and 

detect subtle differences in photosynthetic performance among 28 genotypes of four crop 

species. The operating efficiency of PSII and the kinetics of ETR, as provided through the 

LIFT approach, can facilitate the assessment of genetic variation in photosynthetic traits in 

durum wheat under drought conditions (Zendonadi dos Santos et al., 2021). In addition, LIFT 

fluorometry has also been used onboard airborne sensing platforms, allowing simultaneous 

assessment of photosynthetic efficiency and GPP (Ounis et al., 2016) for plant phenotyping. 

These active fluorescence-based measurements enable monitoring of photosynthetic activities 

at a high temporal resolution regardless of cloud cover conditions. 

 

Spectral indices 

Spectral indices are typically computed using two or more spectral bands, such as red and 

near-infrared bands, which are highly correlated with vegetation growth and productivity. 

Because factors such as illumination and atmospheric conditions and sun-sensor-viewing 

geometry can result in large differences in spectral reflectance even for plants of the same 

species, spectral indices such as normalized and ratio index are more often used due to their 

ability to partly remove or even eliminate these observational biases (Myneni and Asrar, 

1994). The normalized difference vegetation index (NDVI) (Tucker, 1979) and 

photochemical reflectance index (PRI) (Gamon et al., 1992) are two exemplar indices derived 

from satellite images and obtained for characterizing plant photosynthetic performance at the 

ecosystem level. Compared to PRI, NDVI is used as a proxy for vegetation biomass 

accumulation over time and thus may not be appropriate to quantify short-time variation (e.g., 

diurnal) of the photosynthetic rate. 
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In the phenotyping of photosynthesis in field trials, PRI is likely the most widely used 

spectral index since it is a proxy of de-epoxidation of the xanthophyll pigments (or the 

increase of zeaxanthin concentration) (Garbulsky et al., 2011; Peñuelas et al., 2011; Sukhova 

and Sukhov, 2018) and thus has been connected to NPQ and photosynthetic efficiency 

(Coops et al., 2010; Goerner et al., 2011). For example, PRI has been employed as an 

indicator for assessing the sensitivity of photosynthetic performance in crops to ozone effects 

(Ainsworth et al., 2014; Gray et al., 2010). However, the correlation of PRI with NPQ and 

photosynthetic efficiency is subject to various factors such as illumination intensity, scale 

(leaf or canopy), and changes in pigments including chlorophyll content and size of the 

xanthophyll cycle‘s pigment pool (Sukhova and Sukhov, 2018; Wong and Gamon, 2015; 

Yudina et al., 2020). In addition, it remains debated whether the wavelengths used to 

calculate PRI (531 and 570 nm) at the leaf level are still the best at the canopy scale since 

light scattering and other confounding effects can induce changes in spectral response of the 

xanthophyll cycle feature (Garbulsky et al., 2011). 

 

Spectral indices that are related to leaf pigments (e.g., chlorophyll content) and canopy 

structure have also been used in plant phenotyping of photosynthesis. For example, structure 

insensitive pigment index (SIPI, also known as chlorophyll index) (Dash and Curran, 2004) 

has been correlated with the chlorophyll content of vegetation canopies. Since chlorophyll 

content is one of the important pigments in photosynthesis, the derived chlorophyll content-

based index may also be a good indicator of photosynthetic capacity (Croft et al., 2017). Fu 

et al. (2020) used three types of spectral indices including the SIPI-, ratio-, and NDVI-like 

indices for estimating photosynthetic capacity with optimized band wavelengths. Their 

results showed the squared correlation coefficient between spectral indices and 

photosynthetic capacity can be up to 0.8. However, the relationship between the chlorophyll 
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content and photosynthetic rates may not always hold as photosynthesis can be influenced by 

factors such as environmental conditions.  

 

Hyperspectral analysis 

Hyperspectral analysis has become a powerful tool in HTP of photosynthesis and 

photosynthetic physiology due to its non-destructive nature in sensing of radiance reflected 

from vegetation. The use of portable hyperspectral radiometers for quantifying 

photosynthesis is an important step to scale photosynthetic measurements from leaf to canopy 

levels. Portable hyperspectral radiometers typically have standardized reference panels and 

radiometrically calibrated light sources. Thus, the relationship between reflectance spectra 

and the concurrent photosynthetic measurements collected from gas exchange systems can be 

examined without confounding factors such as leaf scattering and canopy structure. Recent 

studies suggested that leaf reflectance spectra can be successfully used to estimate key 

photosynthetic parameters in aspen and cottonwood trees (Serbin et al., 2012), soybean 

(Ainsworth et al., 2014), wheat (Silva-Perez et al., 2018), maize (Yendrek et al., 2017), and 

tobacco (Fu et al., 2019). Stimulated by these leaf-level estimations of photosynthetic 

capacities, hyperspectral imaging (HSI), which can quickly scan hundreds or even thousands 

of field trials, is being utilized to reveal variability in photosynthetic traits of interest at the 

canopy level. These HSI sensors can provide data in three dimensions with spectral 

wavelength across spatial locations, resulting in large amounts of data that need to be 

analyzed in an innovative way (Siebers et al., 2021). 

 

Approaches linking reflectance spectra to photosynthesis or photosynthetic physiology can be 

divided in two main categories. The first category refers to the direct correlation of 

reflectance measurements with photosynthetic measurements (e.g., those derived from gas 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erac077/6537365 by guest on 15 M

arch 2022



Acc
ep

ted
 M

an
us

cri
pt

 

13 
 

exchange systems) using machine learning models (Fu et al., 2020; Serbin et al., 2012). 

These machine learning models such as partial least square regression (PLSR) (Wold et al., 

2001) and Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) are 

used because of their ability to greatly reduce high-dimension hyperspectral data into a few 

important components or variables. The availability of different machine learning algorithms 

also provides opportunities to collectively harness the power of these models to estimate 

photosynthetic physiology, although further examination is necessary to understand the 

transferability of these algorithms to other species under different environmental conditions 

(Fu et al., 2019). Recent efforts have also been made toward overcoming the overfitting issue 

posed by these machine learning algorithms in estimating photosynthesis because of the 

limited number of training samples (Jin et al., 2021).  

 

The second category in quantifying photosynthetic performance from reflectance spectra 

refers to methods based on radiative transfer models (RTMs or numerical inversions). RTMs 

such as PROSAIL (Jacquemoud et al., 2009) and SCOPE (van der Tol et al., 2009) can 

simulate the movement of photons within vegetation by accounting for canopy biochemical 

and biophysical characteristics. In the inversion mode, the model input parameters such as 

chlorophyll content can be varied to yield the best match between observed and simulated 

reflectance spectra. The best solution to these input parameters is then achieved through 

iterative optimization of a loss function (Feret et al., 2008). Camino et al. (2019) successfully 

combined SCOPE inversions and SIF to quantify Vcmax for plant trials under both rainfed and 

irrigated conditions. Fu et al. (2020) showed that RTM-based parameters can explain up to 

60% of variance (as demonstrated by the coefficient of determination, R
2
) in photosynthetic 

capacity among 11 tobacco cultivars. Wang et al. (2021) suggested that RTM-based 

chlorophyll and nitrogen contents can well characterize Vcmax with a correlation coefficient of 
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0.71. In addition, SIF-oriented RTMs such as Fluospect-B (Vilfan et al., 2016), in the future, 

will play an important role in understanding photosynthetic performance in the context of 

plant phenotyping. However, these models need to be further examined for their suitability 

for proximal sensing of plants. 

 

Lesson 1: Traditional remote sensing measurements using multispectral sensors are 

useful to characterize general ecosystem traits, but lack both the spectral resolution to 

extract key variables and the precision to capture intraspecific variation in key plant 

photosynthetic metrics.  

 

Much of the work on remote sensing of photosynthesis has been initiated with large-scale 

satellite-based observations (Siebers et al., 2021) such as Landsat and MODIS images. The 

era of satellite remote sensing of photosynthesis began in the 1970s when the Earth 

Resources Technology Satellite 1 (later termed Landsat 1) was launched. The satellite was 

equipped with a multispectral scanner consisting of four broadband wavelengths including 

red and near-infrared spectral regions for vegetation observations at 60 m. That is also the era 

when spectral indices such as NDVI were designed for characterizing plant biomass and 

photosynthesis (Tucker, 1979). Since then, a series of multispectral sensors onboard Earth 

observation satellites with enhanced spectral, spatial, and temporal resolutions have been 

launched (Table 1). For example, the most recent Landsat satellite is Landsat-9 launched on 

September 27, 2021, carrying the Operational Land Imager 2 (OLI-2) that has much greater 

spectral (11 bands) and spatial resolutions (30 m). The MODIS sensors onboard both the 

Aqua and Terra satellites can scan land surfaces daily at 0.25-0.5 km. The quantification of 

photosynthesis from remote sensing thus has evolved from simple index-based approaches to 
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those that are based on the synergistic use of remote sensing, flux data (e.g., FLUXNET 

data), and machine learning (Ryu et al., 2019). 

 

Clearly, traditional satellite remote sensing data (such as those listed in Table 1) are of a 

coarse spatial resolution that cannot be used to detect any subtle variation in photosynthetic 

performance in field trials that are typically only a few meters across. As the spectral 

resolution of these traditional multispectral satellite sensors is typically larger than 20 nm 

(Table 1), these sensors cannot characterize photosynthetic performance at leaf and canopy 

levels sufficient for HTP of field trials. This has been evidenced by a recent study showing 

that the resampling of reflectance spectra to a larger spectral resolution (20 nm or higher) can 

greatly decrease the accuracy in estimating Vcmax and Jmax (Fu et al., 2020). However, a better 

understanding in suitability of previous remote sensing methods for characterizing 

photosynthesis with proximal sensing platforms is needed and can be helpful for application 

of these sensing techniques in HTP of photosynthesis for field trials.  

Lesson 2: Hyperspectral reflectance increasingly shows widespread utility in measuring 

the physiological controls of photosynthesis. 

 

Expanding beyond the coarse-resolution multispectral techniques, recent studies demonstrate 

that hyperspectral reflectance is a promising tool to measure the biochemical limitations of 

photosynthesis in both C3 and C4 species (Table 2). These studies built upon hyperspectral 

reflectance experiments performed by the remote sensing community that monitored 

ecosystem level performance from biophysical relationships of the plant canopy (i.e., canopy 

greenness, leaf area index, plant architecture, photosynthetic radiation use efficiency, etc.) 

(Garbulsky et al., 2011). The enthusiasm backing the current wave of hyperspectral 

reflectance studies of crops at leaf and plot levels is driven by the rapid and data rich leaf 
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spectra collected by spectroradiometers. The increase in speed over traditional infrared gas 

analyzer (IRGA) systems for estimating leaf photosynthetic traits is especially beneficial 

because many more species or genotypes within a species can be measured quite rapidly, 

enabling studies of genetic diversity (Yendrek et al., 2017). The hyperspectral reflectance 

captured by many spectroradiometers covers 350-2500 nm (i.e., full range of spectrum), with 

various spectral signatures providing information about pigment content, structural 

components, and water content (Curran, 1989; Gamon et al., 1992; Gamon et al., 1997; 

Peñuelas et al., 1993; Peñuelas et al., 1995). More recently, the full range of spectral data are 

exploited for understanding plant traits using multivariate modeling and machine learning 

techniques. This approach has also been used to estimate the biochemical limitations to 

photosynthesis, namely Vcmax and Jmax in C3 species, and maximum phosphoenolpyruvate 

(PEP) carboxylase activity (Vpmax) and light and CO2 saturated photosynthesis (Amax) in C4 

species (Table 2). Provided these hyperspectral reflectance predictive models accurately 

estimate the desired photosynthetic traits, they can be used to perform high-frequency 

measurement campaigns to better understand the physiology of the plants over a growing 

season. These predictive models can also be applied to large populations to better understand 

the genetic variation, genetic architecture, and possibly select for these photosynthetic traits 

to improve crop yields in breeding programs (Furbank et al., 2021; Silva-Perez et al., 2018). 

This new era of hyperspectral reflectance for photosynthetic traits is heavily concentrated on 

pairing leaf reflectance with gas-exchange measurements to build and validate models. A 

meaningful shift towards developing models and resources that can extract the physiological 

controls of photosynthesis at the plot level from unmanned aerial vehicle or high-resolution 

satellite imagery as well as evidence that photosynthetic traits are important in continued 

yield improvement will likely be needed to see this technique be adopted beyond the 

scientific community. 
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Lesson 3: It is not yet clear whether HTP techniques have the precision needed to infer 

small changes in photosynthesis. 

 

One of the potential benefits of using leaf reflectance to predict photosynthetic capacity is the 

ability to analyze thousands of different crop genotypes for quantitative genetic studies. This 

is impractical with gas exchange techniques because of the time required to make 

measurements  (Grzybowski et al., 2021). However, it is not yet clear that HTP techniques 

have the same precision as infrared gas analyzers to detect small differences in 

photosynthetic traits within a mapping population. Moreover, infrared gas analyzers enable 

tight regulation of the environmental conditions (e.g., light intensity, relative humidity, CO2 

concentration, temperature) surrounding the leaf so that multiple genotypes can be measured 

and compared under the same environment. Variation in environmental conditions in nature 

can have a greater effect on photosynthesis than genotype (Kumagai et al., 2021), so HTP 

techniques for testing genetic variation in photosynthesis need to minimize the influence of 

environmental variation. Even with these challenges, studies have estimated photosynthetic 

capacity in diverse populations using hyperspectral reflectance (Silva-Perez et al., 2018; 

Yendrek et al., 2017). Furbank et al. (2021) further created a Web application for wheat 

breeders to upload hyperspectral reflectance measurements and then receive predicted 

photosynthetic traits. This tool will enable a community effort to study variation in 

photosynthetic traits among wheat genotypes, which would improve the precision for 

detecting small differences in photosynthetic capacity within species. 

 

It is important to consider which statistical metrics can be used to compare the accuracy of 

different types of machine learning approaches for trait estimation and to determine the 

accuracy of HTP techniques compared to ‗gold standard‘ approaches (i.e., gas exchange 
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techniques). There have been reviews of hyperspectral studies that use the R
2
 and the root 

mean square error of predictive models to compare the quality of models between 

experiments, e.g., Grzybowski et al. (2021). While these terms are useful for explaining the 

proportion of the variance for a dependent variable that is explained by independent variables 

in a regression and provide measure of the spread of residuals, these metrics are not necessary 

appropriate tools for comparing the quality of different methods (Martin Bland and Altman, 

1986). 

 

To assess the quality of a HTP technique, other practical benchmarks might be more 

informative. For example, if the objective for using a HTP technique is genetic analysis, one 

could consider if the same loci and estimates of heritability are apparent with a standard vs. 

HTP technique. Recently, Choquette et al. (2019) found that photosynthetic capacity 

estimated from hyperspectral techniques had a lower heritability than direct measures of 

photosynthesis using a gas exchange analyzer. In another study, Zendonadi dos Santos et al. 

(2021) found that LIFT techniques detected chlorophyll fluorescence differences between 

durum genotypes which may be strong enough to use for the genome-wide association study 

(GWAS) analysis. Greater efforts are needed to make multiple repeated measurements of the 

same plot to demonstrate the limitations of different HTP techniques and methods. Variation 

in growing season conditions or differences in phenology within a season can also cause 

changes to photosynthetic capacity and are important to detect (Kumagai et al., 2021). Year-

to-year variation decreases the effectiveness of specific PLSR models to predict 

photosynthesis from reflectance (Ge et al., 2019; Meacham-Hensold et al., 2019), and thus 

more research is needed to fully evaluate the transferability of models (Grzybowski et al., 

2021), i.e., models developed based on data from one set of field plots/trials can be applied to 

another set of field plots/trials. 
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Lesson 4: Scalability of high-throughput techniques are uncertain. 

 

The scalability of high-throughput techniques for measuring photosynthetic traits is an open 

question for researchers and is a necessary consideration before methods are more broadly 

adopted. As shown in Table 2, most hyperspectral reflectance models predicting 

physiological constraints of photosynthesis are based on leaf spectra collected at the leaf 

surface, which are then correlated to gas exchange measurements. However, it is unclear how 

predictions of photosynthetic performance scale spatially from leaf to canopy scale using 

measurements such as those from drone- and airborne-based platforms that are critical to 

phenotyping of photosynthesis in a large number of field trials (Araus and Cairns, 2014).  

 

Even with the increased speed in collecting data of spectroradiometers compared to portable 

gas exchange systems, researchers performing surveys with direct leaf sampling attachments 

are limited in their ability to capture leaf reflectance data from more than a couple of leaves 

per plot in a timely manner. Other proximal HTP techniques have similar time constraints. 

Plot level measurements of chlorophyll fluorescence were captured on ~220 accessions of 

wheat using  LIFT (Zendonadi dos Santos et al., 2021). Those data were collected at an 

average speed of 8 cm/s. Canopy level hyperspectral measurements can take 1-2 minutes if 

the cameras need to rotate to scan the field trials (Meacham-Hensold et al., 2020). The drone- 

and airborne-based sensing platforms can help relieve the time constraints (Camino et al., 

2019; Suarez et al., 2021) but may have payload limitations that need to be resolved. 

Additionally, as canopy level measurements are scaled up, a large volume of data can be 

expected (Sagan et al., 2021) and pose difficulty to manage and process (Fu et al., 2020; 

Meacham-Hensold et al., 2020). Large differences are also observed in models built using 
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leaf level hyperspectral reflectance and those using canopy level hyperspectral imaging for 

the same field trials (Figure 2) since leaf-level and canopy-level reflectance spectra are not 

necessarily identical, making direct comparisons difficult (Fu et al., 2020; Meacham-Hensold 

et al., 2019). Thus, further efforts are needed to understand what factors and processes lead to 

the variability of models from leaf to canopy levels.  

 

Lesson 5: Data and methods require standardization so that sound inferences can be 

made across time, space, and species. 

 

Plant phenotyping generates a large amount of data, and processing these data is complex 

(Cobb et al., 2013; Coppens et al., 2017; Fu et al., 2019; Fu et al., 2020). With current 

advances of various HTP techniques for measuring photosynthetic traits, standardizing image 

data collection, processing, and analysis is crucial so proper inferences can be made (Araus 

and Cairns, 2014; Li et al., 2021; Shakoor et al., 2019). Yet, imaging devices, computer-

vision techniques, and software packages are abundant, and obtaining a unified and robust 

suite of standard tools and protocols remains a challenge (Fahlgren et al., 2015; Song et al., 

2021). Despite this challenge, recent advances in the creation of guidelines for best practices 

for data acquisition, open-source image analysis tools, and automated image analysis 

pipelines are becoming more and more common (Berry et al., 2018; Burnett et al., 2021; 

Gehan et al., 2017). For example, Burnett et al. (2021) presented a practical guide and a free 

tutorial for breeders and researchers on the use of the PLSR modeling method that allows the 

prediction of physiological traits from leaf level hyperspectral data including Vc,max and Jmax. 

 

Central to advance the field of phenotyping is access to datasets for the identification of novel 

and potentially new interesting results that can further provide the foundation on which 
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different data streams can be used to inform models (Danilevicz et al., 2021). This is because 

one of the most time consuming and costly aspects of HTP is the correlation of traits to 

measured physiological processes, and many studies generally focus on specific questions 

despite there being more information that can be extracted from phenotyping datasets using 

different or new approaches and techniques (Fiorani and Schurr, 2013; Singh et al., 2016; 

Ubbens and Stavness, 2017). However, many publications do not provide the needed 

accessible metadata (e.g., extensive description of data collection methodology, biological 

information, and experimental conditions), raw data, and code source for further analyses 

(Rosenqvist et al., 2019). In the face of this challenge, many journals and funding agencies 

are now requiring researchers to store and give access to this information in open access 

repositories and libraries. The NASA-funded Ecological Spectral Information System 

(EcoSIS, www.ecosis.org) and Ecological Spectral Model Library (www.ecosml.org) 

represent examples of database and library designed to store spectral and ancillary 

measurements as well as model codes. Currently, the EcoSIS spectral library contains 172 

datasets (Wagner et al., 2018), and the accumulation of publicly available data and model 

code will not only help identify areas for computation tool improvements but also accelerate 

multi-species, multi-years and cross-site comparisons for meaningful insights to enhance 

photosynthesis and crop productivity under varied environmental conditions. 

 

Lesson 6: For a single HTP trait, it is not clear whether one model can be applied to 

multiple species within a functional group or, ideally, for all species in general. 

 

Approaches to predict photosynthetic capacity from spectra rely on statistical methods that do 

not necessarily produce accurate predictions when input spectra are outside of the range of 

the training data (Meacham-Hensold et al., 2019). This raises the question of whether a single 
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method can be developed that will work for all individuals within a species or for all species 

in general. For example, if a compound unrelated to photosynthetic capacity, but which 

absorbs in similar wavelengths, exists in one species and not another, a model parameterized 

with only one species may incorrectly predict capacity of the other. However, if there are 

differences between the absorption spectra of the photosynthesis related and unrelated 

compounds, with a large variety of values, a model could be developed that accounts for 

these effects. It is reasonable then that a potential solution for a globally applicable model is 

to collect data and build a model using a large range of species and genotypes within species 

(Serbin et al., 2015). 

 

Building such a model is challenging and so an alternative, simpler approach would be 

attractive. Similar methods that relate spectra to physiological parameters are applicable 

across species, such as chlorophyll fluorescence and PRI (Rascher et al., 2007). Examining in 

vitro spectrophotometric methods to measure quantities related to Vcmax and Jmax, Rubisco 

activity and chlorophyll concentration provides insights into how hyperspectral methods 

could be adapted to work for many species. In contrast to machine learning methods like 

PLSR, which are treated as a black box, methods based on chlorophyll fluorescence and PRI 

rely on mechanistic understanding of the relationship between the processes of interest and 

wavelengths used in the calculations.  

 

In vitro spectrophotometric methods to measure Rubisco activity rely on spectral properties 

of compounds other than Rubisco, for example NADH (Scales et al., 2014), rather than of 

Rubisco itself. In this case, the mechanistic understanding of the process is used to isolate 

measurement to a single, easily measured compound. However, since many processes affect 

NADH concentration in vivo, this mechanism likely cannot be used to develop an in vivo 
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hyperspectral method to estimate Vcmax. Potentially a mechanistic model for Jmax is more 

tractable as chlorophyll is easily measured spectrophotometrically and its concentration is 

potentially a key limit to Jmax. As such, measuring chlorophyll concentration itself in vivo in a 

generally applicable way seems promising. However, chlorophyll is only one limitation to 

Jmax, and given the numerous other limitations, a mechanistic approach using only 

spectrophotometry seems unlikely. Recent advances in measurements of SIF, which is a 

function of light absorption by chlorophyll and the functioning of photosynthetic electron 

transport, demonstrates its ability to infer Jmax (Fu et al., 2020). However, to extract both 

Vcmax and Jmax from high-throughput measurements, the most promising outlook for a 

universal (or near universal) method may require a model built from a comprehensive data 

set. 

 

Given the large number of crop species and the variety of compounds that absorb, reflect, or 

fluoresce, developing a universal model would be difficult and time consuming. As with 

other large-scale endeavors, researcher-based networks such as the EcoSIS (www.ecosis.org) 

are being developed to share datasets useful for building and training models. Considering the 

variety of equipment, which can vary in spectral resolution, range of wavelengths and 

sensitivity, and other experimental considerations such as temperature and light source, 

standardized documentation or protocols would help ensure individual data sets can be 

combined for model development (as discussed in Lesson 5). As these data sets are collected 

from different plant species/functional types, it would be a good starting point to build 

predictive models by plant species or functional types, for which further studies are 

warranted.  
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Outlook for HTP of photosynthesis 

 

Ideally, HTP techniques would be low cost, require little training and expertise to use, 

provide precise measurements and reliably operate for hundreds of hours of use. Costs of the 

HTP sensors for phenotyping photosynthesis are high, but within the same order of 

magnitude as traditional instruments (e.g., gas exchange systems). Some manufacturers 

produce equipment that is reliable and easily collects spectra in the field, but other systems 

may not be well adapted for field use and require substantial in-house development to adapt 

for field use. Furthermore, most systems allow for relatively easy data collection but the 

development and use of models to extract photosynthetic traits requires in-depth technical 

expertise. The requirement for in-depth technical expertise thus limits initial users of these 

methods to advanced breeders and experimental researchers. For these groups, the expense 

and in-house adaptations may be acceptable costs for using the equipment, but the technical 

challenge to develop and use these models will likely remain a large barrier to adoption. For 

widespread use, the equipment likely needs integrated and pre-developed models (Furbank et 

al., 2021) so that users can easily collect data and have the instrument output derived data, 

similar to advanced gas exchange systems. 

 

Beyond scientific applications, it is unlikely that farmers would adopt this technology without 

it providing a clear way to improve yield. One approach might be to use these techniques to 

identify regions of fields with low photosynthetic capacity and then find out factors and/or 

variables associated with the low photosynthetic capacity. These problem areas could then be 

addressed by the farmer or land manager as needed for improved crop production. In the 

major agricultural regions, this may be of little use since the scaling of HTP platforms and 

techniques to a large scale is not a trivial task. For regions where excess applications are cost 
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prohibitive, the expense of HTP equipment may also cost prohibitive but as these techniques 

advance, the price may become more affordable, ease of use improved, and data outputs 

easier to obtain. As improving photosynthesis is considered one of the potential strategies for 

increased crop production to meet rising food demands (Long et al., 2015; Ort et al., 2015; 

Wu et al., 2019a), the main benefit of HTP techniques for photosynthesis phenotyping would 

be to help provide more efficient, resilient, and productive crop cultivars to farmers. 
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Table 1 Major Earth observation satellites for landscape monitoring since 1970s. 

Satellite and 

Sensor 
Spectral bands (µm) 

Spatial resolution 

(m) 

Temporal 

resolution (days) 

and data 

availability 

Main applications 

or variables for 

vegetation 

monitoring 

Landsat 1-3 

Multispectral 

Scanner 

Band 1: 0.5-0.6 

Band 2: 0.6-0.7 

Band 3: 0.7-0.8 

Band 4: 0.8-1.1 

60 16; 1972-1983 

various vegetation 

indices such as 

NDVI, PRI; 

vegetation 

phenology 

Landsat 4-5  

Thematic Mapper 

Band 1: 0.45-0.52 

Band 2: 0.52-0.60 

Band 3: 0.63-0.69 

Band 4: 0.76-0.90 

Band 5: 1.55-1.75 

Band 6: 10.40-12.5 

Band 7: 2.08-2.35 

Band 6: 120 

All other bands: 30 
16; 1982-2012 

Various vegetation 

indices such NDVI 

and PRI; vegetation 

phenology; land 

surface temperature 

Landsat 7  

Enhanced 

Thematic Mapper 

Plus 

Band 1: 0.45-0.52 

Band 2: 0.52-0.60 

Band 3: 0.63-0.69 

Band 4: 0.77-0.90 

Band 5: 1.55-1.75 

Band 6: 10.40-12.5 

Band 7: 2.09-2.35 

Band 8: 0.52-0.90 

Band 6: 60 

Band 8: 18 

All other bands: 30 

16; 1999-2021 

Various vegetation 

indices such as 

NDVI and PRI; 

vegetation 

phenology; land 

surface temperature 

Landsat 8-9 

Operational Land 

Imager and 

Thermal Infrared 

Sensor 

Band 1: 0.43-0.45 

Band 2: 0.45-0.51 

Band 3: 0.53-0.59 

Band 4: 0.64-0.67 

Band 5: 0.85-0.88 

Band 6: 1.57-1.65 

Band 7: 2.11-2.29 

Band 8: 0.50-0.68 

Band 9: 1.36-1.38 

Band 10: 10.6-11.19 

Band 11: 11.50-12.51 

Band 8: 15 

Band 10 and 11: 

100 

All other bands: 30 

16; 2013-present 

Various vegetation 

indices such as 

NDVI and PRI; 

vegetation 

phenology; land 

surface temperature 

Terra and Aqua 

Moderate 

Resolution 

Imaging 

Spectrometer 

Band 1: 0.62-0.67 

Band 2: 0.84-0.87 

Band 3: 0.46-0.48 

Band 4: 0.55-0.57 

Band 5: 1.23-1.25 

Band 6: 1.63-1.65 

Band 7: 2.10-2.16 

Band 1-2: 250 

All other bands: 

500 

Daily; 2000-

present 

Various vegetation 

indices such as 

NIRv, NDVI and 

EVI; vegetation 

phenology; land 

surface temperature; 

GPP 

Sentinel-2 

Multispectral 

Imager 

Band 1: 0.43-0.45 

Band 2: 0.45-0.52 

Band 3: 0.54-0.58 

Band 4: 0.65-0.68 

Band 5: 0.69-0.72 

Band 1, 9-10: 60 

Band 2-4, 8: 10 

Band 5-6, 11, 12: 

20 

~5 day for 

combined 

Sentinel-2A and -

2B satellites; 

2015-Present 

NDVI, EVI, 

vegetation 

phenology 
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Band 6: 0.73-0.75 

Band 7: 0.77-0.79 

Band 8: 0.78-0.90 

Band 9: 0.93-0.96 

Band 10: 1.36-1.39 

Band 11: 1.56-1.66 

Band 12: 2.10-2.28 

Note for abbreviations: NDVI-Normalized Difference Vegetation Index, EVI-Enhanced 

Vegetation index, NIRv- the near-infrared reflectance of vegetation is the product of total 

scene NIR reflectance and the NDVI, GPP-Gross Primary Productivity.  
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Table 2. Models of photosynthetic capacity developed from leaf-level or canopy-level hyperspectral reflectance measurements. Reported traits 

include the initial slope derived from A/ci curves (Rubisco maximum carboxylation capacity, Vcmax in C3 plants and maximum PEP carboxylase 

activity, Vpmax, in C4 plants), and maximum electron transport capacity (Jmax) in C3 species, and light and/or CO2-saturated photosynthesis (Amax). 

For each trait, the goodness of fit for the predictive model (R
2
) and the root mean square error (RMSE) are reported. Asterisk (*) indicates a 

normalized RMSE. When multiple PLSR models were presented in a given publication, a single model was selected for the table. When multiple 

machine learning approaches were provided, the range of model fits were provided. Abbreviations: partial least squares regression (PLSR), 

development of new spectral (vegetation) indices or use of indices in new models (SI), radiative transfer model (RTM), neural network (NN), 

support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), random forest (RF), Gaussian process (GP), gradient 

boost (GDboost), adaptive boosting (Adaboost). Further summary of additional information and context for studies listed in Table 2 can be found 

in Appendix S1 Section 2. 

Reference 
Species (organized by trees and 

crops) 
Scale Modelling Approach 

Initial Slope 

R
2
, RMSE 

Jmax 

R
2
, RMSE 

Amax 

R
2
, RMSE 

 Trees      

Doughty et al. (2011) 
Tropical tree and palm (mixed 

species) 

Leaf 

Canopy 
PLSR   

0.47, 5.1 

0.49, 4.7 

Serbin et al. (2012) Populus tremuloides, P. deltoides Leaf PLSR 0.89, 15.4 0.93, 18.7  

Dechant et al. (2017) 

Morus alba, 

Prunus serotina, 

and 35 additional tree species 

Leaf PLSR 0.64, 17.36 0.70, 27.77  

Barnes et al. (2017) Populous deltoids Leaf PLSR 0.72, 4.2 0.72, 18.2  

Wu et al. (2019b) Tropical tree (mixed species) Leaf PLSR 0.89, 6.6   

Jin et al. (2020) Temperate tree (mixed species) Leaf SI 0.50, NA 0.67, NA  

Calzone et al. (2021) Punica granatum Leaf PLSR   0.73, 0.76 

*Jin et al. (2021) Temperate tree (mixed species) Leaf PLSR 0.69, 0.2 0.87, 0.15  

Lamour et al. (2021) Tropical (mixed species) Leaf PLSR 0.74, 13.1 0.73, 19.8  

Yan et al. (2021) Temperate, subtropical, tropical Leaf PLSR 0.77, 9.7   
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(mixed species) 

Zhou et al. (2021) Citrus limon Leaf 
RF, SVM, GDboost, 

Adaboost 
  

0.64-0.92, 

1.84-2.55 

       

 Crops      

Ainsworth et al. (2014) Glycine max Leaf PLSR 0.88, 13.4   

Serbin et al. (2015) 9 California cropping systems Canopy PLSR 0.94, 11.56   

*Heckmann et al. 

(2017) 

Brassica oleracea 

Zea mays 

Moricandia (mixed species) 

Leaf PLSR, NN 

0.6, 0.016 

0.58, 0.013 

0.65, 0.019 

 

0.51, 3.99 

0.69, 3.38 

0.44, 4.89 

Yendrek et al. (2017) Zea mays Leaf PLSR 0.43, 20.64  0.65, 6.6 

Silva-Perez et al. (2018) Triticum aestivum Leaf PLSR 0.62, 20.68 0.7, 25.54  

Fu et al. (2019) Nicotiana tabacum Leaf 
PLSR, NN, SVM, 

LASSO, RF, GP 

0.60-0.65, 

41.7-54.0 

0.45-0.56, 

40.1-44.7 
 

Meacham-Hensold et 

al. (2019) 
Nicotiana tabacum Leaf PLSR 0.77, 10.83 0.72, 10.76  

Meacham-Hensold et 

al. (2020) 
Nicotiana tabacum Canopy PLSR 0.79, 11.9 0.59, 11.5 0.54, 10.6 

Cotrozzi et al. (2020) Zea mays Leaf PLSR   0.86, 6.93 

Fu et al. (2020) Nicotiana tabacum Canopy PLSR, RTM, SI 
0.78-0.84, 

33.8-38.6 

0.80-0.81, 

22.6-23.4 
 

Kumagai et al. (2021) Glycine max Leaf 
PLSR, RR, LASSO, 

SVR 
0.57-0.65, NA 

0.48-0.58, 

NA 
 

Sexton et al. (2021) Nicotiana tabacum Leaf PLSR 0.81, 18.1  0.86, NA 

Wang et al. (2021) Zea mays Leaf 
PLSR, 

RTM 
  0.66, NA 
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Figure legends 

Figure 1.  A general overview of remote and proximal sensing techniques used for HTP of 

photosynthesis. The sensors used in the HTP platforms may be passive or active, dependent on 

whether these sensors have their own light source. The methods summarized here include those 

based on chlorophyll fluorescence (either actively or passively measured), spectral indices, and 

hyperspectral reflectance data. The number in the spectral indices plot represents the squared 

correlation coefficient between a ratio index and the maximum carboxylation rate, and a higher 

number indicates the better correlation of such an index with the maximum carboxylation rate. 

Further details can be referred to in Fu et al. (2020). The reflectance spectra shown here were 

captured using a hyperspectral camera over a tobacco canopy and shaded regions show the 

variability in reflectance spectra within that canopy. The development of remote/proximal 

sensing methods to estimate photosynthesis requires ground-truth data for both model training 

and validation. 

Figure 2. Vcmax and Jmax predictions at leaf (a and b) and canopy (c and d) scales for the same 

field trials. All predictions were made using the PLSR method with inputs of reflectance spectra 

collected using portal spectroradiometers (a and b) and hyperspectral imaging (c and d) for all 

tobacco cultivars at different dates. The colors in panel a and b and shapes in panel c and d 

represent different tobacco cultivars. This figure was adapted from Meacham-Hensold et al. 

(2019) and Fu et al. (2020) and further details related to the PLSR modeling can be found in 

these two studies. The better prediction performance at the canopy level may be attributed to the 

spatial averaging of photosynthetic parameters (Vcmax and Jmax) and pixel-based reflectance 

spectra which partly removed intra-plot variations that can be seen from leaf-level analysis. 
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Figure 1 
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Figure 2 
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