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ABSTRACT
Fitting mechanistic models, such as the Farquhar‐von‐Caemmerer‐Berry model, to experimentally measured photosynthetic

CO2 response curves (A‐Ci curves) is a widely used technique for estimating the values of key leaf biochemical parameters and

determining limitations to photosynthesis in vivo. Here, we present PhotoGEA, an R package with tools for C3 A‐Ci, C3 Variable

J and C4 A‐Ci curve fitting. In contrast to existing software, these automated tools use derivative‐free optimizers to ensure close

fits and they calculate non‐Gaussian confidence intervals to indicate which parameter values are most reliable. Results from

PhotoGEA's C3 A‐Ci curve fitting tool are compared against other available tools, where it is found to achieve the closest fits

and most reasonable parameter estimates across a range of curves with different characteristics. PhotoGEA's C3 Variable J and

C4 A‐Ci fitting tools are also presented, demonstrating how they can provide insights into mesophyll conductance and the

processes limiting C4 photosynthesis at high CO2 concentrations. PhotoGEA enables users to develop data analysis pipelines for

efficiently reading, processing, fitting and analysing photosynthetic gas exchange measurements. It includes extensive docu-

mentation and example scripts to help new users become proficient as quickly as possible.

1 | Introduction

Vascular land plants emit water vapour through transpiration,
absorb CO2 during the Calvin‐Benson‐Bassham cycle, emit O2

via the light‐dependent reactions and emit CO2 through pho-
torespiration and several other biochemical pathways. These
gas exchange processes are critical in determining plant growth,
water use and nutrient uptake and even influence the molecular
and isotopic composition of the atmosphere (Ainsworth and
Long 2021; Yakir and Sternberg 2000). Thus, the ability to
quantify rates of gas exchange plays a key role in diverse fields
such as plant science, agriculture, ecology and climate science

(Mooney 1972; Evans and von Caemmerer 2013; Haworth
et al. 2018; Baldocchi 2020).

In a plant physiology context, leaf‐level CO2 response curves,
where the net CO2 assimilation rate (An) and the intercellular
CO2 concentration (Ci) are recorded while varying the CO2

concentration surrounding a leaf, are one of the most important
gas exchange measurements because they enable estimates of
key biochemical parameters and the identification of rate‐
limiting processes (Long 2003; Busch et al. 2024). These curves
are commonly referred to as A‐Ci curves, or, when also using
chlorophyll fluorescence (CF) to record the operating efficiency
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of photosystem II (ϕPSII), A‐Ci+CF curves. Parameter estimates
are made by fitting a biochemical model of leaf‐level CO2

assimilation to experimentally measured curves, such as the
Farquhar‐von‐Caemmerer‐Berry (FvCB) model for C3 plants
(Farquhar et al. 1980; Busch et al. 2018; Lochocki and
McGrath 2025) or the von Caemmerer model for C4 plants (von
von Caemmerer 2000; 2021).

Measuring and fitting CO2 response curves has provided a great
deal of insight into photosynthetic biochemistry at several scales
and contexts. Key results include an understanding of how
capacities for light harvesting and CO2 fixation are coordinated
with each other (Wullschleger 1993) and dependent on nutrient
availability (Kattge et al. 2009; Walker et al. 2014), temperature
(Kattge and Knorr 2007; Kumarathunge et al. 2019) and atmo-
spheric CO2 concentration (Bernacchi et al. 2005) across diverse
C3 plant species. Parameters estimated from response curves have
been used to calibrate high‐throughput phenotyping methods
based on hyperspectral reflectance (Heckmann et al. 2017;
Yendrek et al. 2017; Meacham‐Hensold et al. 2019) or satellite data
(Croft et al. 2017), and as inputs to mechanistic crop growth
models (Lochocki et al. 2022; Wu 2023). Curve fitting has revealed
natural variation in photosynthetic biochemistry within a single
species (De Souza et al. 2020) and has been used to characterize
engineered plants with improved water use or photosynthetic
efficiency (Caine et al. 2019; Dunn et al. 2019; De Souza et al. 2022;
Salesse‐Smith, Lochocki, et al. 2024).

This important work has been facilitated by software tools for
fitting CO2 response curves, which have helped make this
technique more accessible to researchers without programming
expertise (Busch et al. 2024). These tools span a wide range of
methods, and they can be categorized broadly by biological
system and measurement type (C3 or C4 A‐Ci with or without
CF), software platform (Excel spreadsheet, R package, or other),
approach to identifying rate‐limiting processes and determining
parameter uncertainties, and type of numerical optimization
algorithm. Some of the earliest fitting tools were Excel spread-
sheets, a format that revolutionized the fitting process due to its
ease of operation and remains popular today (Sharkey
et al. 2007). However, spreadsheet tools require frequent man-
ual operations, preventing automation, and it is difficult to
deliver updates or bug fixes to spreadsheet users, among other
potential issues (Stinziano et al. 2021). As an alternative, soft-
ware packages designed for the R language (R Core Team 2024)
have been available for the last decade (Duursma 2015), en-
abling command line interfaces for automation and a robust
distribution system for updates, but also requiring more coding
skills to operate. There are also options available in other soft-
ware languages such as SAS code (Dubois et al. 2007), or via
online services (Gu et al. 2010).

All these curve fitting tools perform two central functions—
identifying the rate‐limiting process at each point in the curve,
and estimating the values of key parameters. There are three
main approaches to identifying limiting processes: manual,
exhaustive and full‐curve. In manual fitting tools, users assign a
rate‐limiting process to each point before estimating parameter
values (Sharkey et al. 2007). Exhaustive fitting tools can be
understood as an extension of manual tools where an algorithm
automatically tests all possible ways to assign limiting processes

to each point. The set of assignments that produces the smallest
sum of squared residuals is chosen and used for the final
parameter estimates (Gu et al. 2010). In full‐curve tools, iden-
tification of limiting processes and estimation of parameter
values proceed simultaneously (Dubois et al. 2007), where the
rate‐limiting process at each point is determined from the
parameter values according to an equation that incorporates
each potential process. There are also three main approaches to
parameter estimation, where values can be estimated using
ordinary least squares regression, nonlinear regression with
quasi‐Newton optimization, or nonlinear regression with
derivative‐free optimization. Besides best estimates of parame-
ter values, tools can quantify uncertainties by assuming a
Gaussian probability distribution or by using non‐Gaussian
approaches such as likelihood ratio confidence intervals (Pek
et al. 2017; Doganaksoy 2021), although some tools do not
calculate uncertainties. Finally, tools can vary in the model
equations they use; for example, not all tools for fitting C3 CO2

response curves include triose phosphate utilization (TPU)
limitations, although considering TPU is necessary for accurate
parameter estimates (Gregory et al. 2021).

In principle, each approach described above can produce close
fits and accurate parameter estimates, but each may have dif-
ferent drawbacks or advantages. Moreover, even fitting tools
employing the same central approach may produce different
results due to differences in the details of their code imple-
mentations. Thus, despite the diversity of existing software,
there is still room for new tools and fitting approaches, espe-
cially regarding full‐curve limitation identification, derivative‐
free optimizers and non‐Gaussian uncertainty estimates, which
have not been widely employed. Among existing peer‐reviewed
tools for fitting C3 A‐Ci curves that include TPU limitations
(Sharkey et al. 2007; Duursma 2015; Sharkey 2016; Stinziano
et al. 2021; Gregory et al. 2021), none provide these features
(Table 1), and we argue later that these features add substantial
value to curve fitting analyses. Likewise, no tools for fitting C3

A‐Ci+CF curves with the ‘Variable J ’method that include TPU
limitations (Moualeu‐Ngangue et al. 2017) or for fitting C4 A‐Ci

curves (Bellasio et al. 2016; Zhou et al. 2019) provide them
either. Another issue among existing tools is that none of the
available R packages include fully worked examples starting
from instrument log files, posing a barrier to some researchers
who wish to use them.

Here, we present an R package called PhotoGEA (photo-
synthetic gas exchange analysis) with tools for fitting C3 A‐Ci,
C3 A‐Ci + CF and C4 A‐Ci curves that provide unique features
not found in other software. We show that PhotoGEA's C3 A‐
Ci fitting tool produces results that more closely fit tobacco A‐
Ci curves than other tools, and that its non‐Gaussian confi-
dence interval calculations accurately identify unreliable
parameter estimates. We also apply PhotoGEA's Variable J
fitting tool to a set of soybean A‐Ci + CF curves, and present
PhotoGEA's C4 A‐Ci fitting tool using a set of maize and
sorghum A‐Ci curves. PhotoGEA helps facilitate other tasks
related to curve fitting, such as reading instrument log files,
validating data and synthesizing results, and has already
proven useful in several plant physiology studies (Salesse‐
Smith, Lochocki, et al. 2024; Salesse‐Smith, Adar, et al. 2025;
Pelech et al. 2025).
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2 | Methods

2.1 | Brief Overview of PhotoGEA

The PhotoGEA package contains three core functions for fitting
CO2 response curves using mechanistic models:

• fit_c3_aci for C3 A‐Ci curves; currently able to fit αold, αG,
αS, αT , Γ*, gmc, J , RL, Tp and Vcmax. By default, only αold, J ,
RL, Tp and Vcmax are fit.

• fit_c3_variable_j for C3 A‐Ci+CF curves; currently able to
fit αold, αG, αS, αT , Γ*, J , RL, τ ,Tp andVcmax. By default, only
αold, J , RL, τ , Tp and Vcmax are fit.

• fit_c4_aci for C4 A‐Ci curves; currently able to fit αPSII , gbs,
gmc, J , RL, fRLm, Vcmax, Vpmax and Vpr . By default, only RL,
Vcmax and Vpmax are fit.

See Supporting Information S1: Sections S1–S2 for definitions of
all parameters listed above. These functions allow users to
choose temperature response parameters from preset options
(or to provide their own; Supporting Information S1: Sec-
tion S7), to choose which parameters to fit, and to apply con-
straints on the range of each parameter. Flexible temperature
response options are essential for analysing curves from some
species; for example, Gossypium hirsutum mesophyll conduct-
ance was found to follow a second‐order polynomial tempera-
ture response rather than a typical Arrhenius‐type response
(Sargent et al. 2024). Each function takes a whole‐curve fitting
approach using maximum likelihood regression and derivative‐
free optimization algorithms, and non‐Gaussian confidence
intervals for each estimated parameter value are calculated
from likelihood ratios. To avoid numerical errors, PhotoGEA's
FvCB model code identifies limiting processes by choosing
minimal carboxylation rates (Supporting Information S1:
Equations A4 and A9) rather than minimal assimilation rates
(Supporting Information S1: Equation A17), and only allows
TPU limitations above a biochemistry‐based CO2 concentration
threshold determined by Γ*, αold, αG, αS and αT (Supporting
Information S1: Equations A3 and A8) rather than a fixed
threshold such as 400 μbar (Lochocki and McGrath 2025).

A major goal of the PhotoGEA package is to provide a full set of
tools for creating a complete gas exchange data analysis pipe-
line. Data analysis involves many steps, including data collec-
tion, data integration, exploratory analysis, statistical analysis
and others (Tukey 1962; O'Neil and Schutt 2014). PhotoGEA
aims to aid plant physiologists with these tasks by providing
functions for directly reading instrument log files without
requiring any pre‐formatting (read_gasex_file), for checking
that the same sequence of CO2 set‐points were used across all
curves in a data set (check_response_curve_data), for removing
extra recovery points (organize_response_curve_data) and for
many other common practicalities. To help ensure valid results,
all PhotoGEA functions check and report units. PhotoGEA
includes detailed examples with methods for visually checking
the input data and the fits.

The PhotoGEA package is written entirely in R and its source
code is publicly available from its GitHub page under the MIT
license (Lochocki 2024). Extensive documentation, includingT
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simple examples using each function in the package and long‐
form vignettes, are included with the package itself and avail-
able at the GitHub page. Users are encouraged to use the long‐
form examples as a basis for their own scripts. Automated tests
ensure that the package works on Windows, macOS and
Ubuntu using R version 3.6.0 (PhotoGEA's minimum supported
version) and the latest version of R (4.4.2 at the time of writing).
Regression tests are implemented using the testthat package
(Wickham 2011), and covr::package_coverage (Hester 2023)
reports that 90.8% of PhotoGEA's code is covered by tests, ex-
amples, and vignettes. In general, PhotoGEA is designed to
follow the principles for resilient coding described by Stinziano
et al. (2021).

2.2 | Experimental Methods

CO2 response curves were measured from fully developed
leaves of greenhouse‐grown tobacco (cv. Samsun) plants using
portable photosynthesis systems (LI‐6800) with integrated
multiphase flash fluorometers (6800‐01A) and 6 cm2 apertures
(LI‐COR Environmental). For these curves, the sequence of
reference CO2 concentration set‐points was 400, 300, 200, 150,
100, 75, 50, 40, 30, 20, 10, 400, 400, (500), 600, 800, 1000, 1200,
1500 μmol mol−1, and measurements were logged after 3–5min
according to stability criteria. The point at 500 μmolmol−1 was
used for most, but not all, curves. Chlorophyll fluorescence was
also measured at each point using the multiphase flash option
with a saturating flash of 10,000 μmolm−2 s−1. CO2 response
curves were measured at incident photosynthetically active
photon flux density (PPFD) of 100, 150, 200, 250, 300, 400, 450,
500, 600, 800, 1000, 1200 or 1500 μmolm−2 s−1 with leaf tem-
perature set to 27°C and vapour pressure deficit in the leaf
chamber set to 1.3 kPa. Three or four curves were measured
from different plants at each incident PPFD (Qin), with the
exception of 450 and 1200 μmol m−2 s−1 (one curve each) and
1000 and 1500 μmolm−2 s−1 (two curves each), for a total of 36
curves. These plants were sown in January 2023 and measured
in March 2023 (winter in Champaign, Illinois). The greenhouse
used supplemental lighting with a 12 h photoperiod. A sensor in
the greenhouse measuring total light incident on the plants
(natural and supplemental) indicates the median hourly day-
time PPFD during this period was approximately 300 μmol
m−2 s−1, and the daily maximum was below 600 μmolm−2 s−1

on most days.

CO2 response curves were also measured from field‐grown
soybean (cv. LD11), maize (DeKalb DKC58 34R1B), and grain
sorghum (DeKalb DKS38‐16) during August 2021 and 2022
using LI‐6800 systems with Qin set to 2000 μmol m−2 s−1, leaf
temperature between 30°C and 32°C, and relative humidity in
the leaf chamber between 60% and 70%. The sequence of ref-
erence CO2 concentration set‐points was 400, 300, 200, 150,
100, 75, 50, 20, 400, 400, 600, 800, 1000, 1200, 1500,
1800 μmol mol−1 (soybean) or 400, 300, 200, 120, 70, 30, 10,
400, 400, 500, 600, 800, 1200 μmol mol−1 (maize and sorghum).
Logging and fluorometer settings were identical to those used
for the tobacco curves. All plants were in early reproductive
stages, and fully developed sunlit leaves were chosen for
measurements.

2.3 | Computational Methods

Tobacco A‐Ci curves were fit on a Ci basis using the fit_c3_aci
function from PhotoGEA and four other tools: PCE calculator
(Sharkey 2016), plantecophys (Duursma 2015), photosynthesis
(Stinziano et al. 2021) and msuRACiFit (Gregory et al. 2021).
Soybean A‐Ci+CF curves were fit using the fit_c3_variable_j
function from PhotoGEA. All C3 fits used temperature response
parameters from Sharkey et al. (2007), with the exception of
soybean Kc, KO and Γ*, where the Arrhenius parameters were
estimated from Orr et al. (2016). When comparing C3 parameter
estimates between tools, values are always reported at leaf
temperature (27°C), since some tools do not provide values at
the standard reference temperature of 25°C. Maize and sor-
ghum A‐Ci curves were fit using the fit_c4_aci and fit_c4_a-
ci_hyperbola functions from PhotoGEA. Temperature response
parameters from von von Caemmerer (2021) were used for the
C4 mechanistic fits. For all PhotoGEA fits, version 1.1.0 of the
package was used, and best‐fit parameters were identified using
the DEoptim evolutionary optimizer from the DEoptim R
package (Ardia et al. 2011; Mullen et al. 2011). For detailed
settings used with each package, see Supporting Information S1:
Section S9.

3 | Results

3.1 | Comparing Fits Between PhotoGEA and
Other Peer‐Reviewed Tools for One C3 A‐Ci Curve

In the FvCB model for C3 leaves, An can be limited by
ribulose‐1,5 bisphosphate carboxylase/oxygenase (Rubisco)
activity, ribulose‐1,5 bisphosphate (RuBP) regeneration, or
TPU, and key parameters that can be estimated from a curve
fit include the maximum rate of Rubisco activity (Vcmax), the
potential whole‐chain electron transport rate (J ), the maxi-
mum rate of TPU (Tp) and the rate of non‐photorespiratory
CO2 release in the light (RL). When assimilation is limited by
Rubisco activity, it is typically denoted by Ac rather than An;
likewise, Aj and Ap denote rates limited by RuBP regenera-
tion or TPU, respectively. See Supporting Information S1:
Section S3 for a full description of the model equations. Key
outputs from any fitting tool using this model will include the
modelled values of An, Ac, Aj and Ap at each point in the
curve, along with best‐fit values of Vcmax, J , Tp and RL and
uncertainty estimates for each parameter. If fits are made on
a Ci basis (rather than using the chloroplast CO2 concentra-
tion, Cc), the photosynthetic parameter estimates should be
understood as ‘apparent’ values rather than true chloroplastic
values (Ethier and Livingston 2004).

The Rubisco‐limited rate Ac depends on Vcmax, so any points in
a CO2 response curve identified as being Rubisco‐limited will
determine the best‐fit estimate for Vcmax. Similarly, the points
identified as being limited by RuBP regeneration or TPU will
determine the estimates for J andTp. As a corollary, if no points
are identified as being Rubisco‐limited, then it is not possible to
estimate Vcmax; similar considerations apply for for J and Tp.
The net CO2 assimilation rate depends on RL regardless of
which process is limiting. Although TPU was not part of the
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 13653040, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pce.15501 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [07/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



original FvCB model, including TPU is essential for accurate
parameter estimates; otherwise, TPU‐limited points may be
misattributed to RuBP regeneration limitation, skewing esti-
mates of J (Gregory et al. 2021). TPU is particularly important
for fitting curves where An decreases with Ci at high Ci. This
‘reverse sensitivity’ can be understood as a consequence of
glycolate carbon remaining in the cytosol, and two different sets
of equations have been developed to model this process. The
newer version (Supporting Information S1: Section S1.2)
includes three parameters (αG, αS and αT) representing the
amounts of glycolate carbon leaving the photorespiratory
pathway as glycine, serine, or 1‐5, methylase‐tetrahydrofolate
(CH2‐THF), respectively (Busch et al. 2018; Busch 2020). The
original version (Supporting Information S1: Section S1.1)
includes a single parameter (αold, originally denoted α) repre-
senting the amount of glycolate carbon leaving the photo-
respiratory pathway in any of these forms (Harley et al. 1992;
von Caemmerer 2000). In practice, C3 A‐Ci curves often exhibit
TPU‐limited assimilation, including reverse sensitivity, so fit-
ting tools that do not include this process have limited utility.

Among available peer‐reviewed tools for fitting C3 A‐Ci curves
that include TPU, we have selected four to compare against
PhotoGEA (Section 2.3); these tools were chosen based on their
prominence in the plant physiology literature and their ease of
use, and they represent a range of approaches to curve fitting.
The main goal for this comparison is to assess the broad ability
of each tool to fit measured curves with a variety of limiting
states and characteristics. One way to illustrate the differences
between them is to fit a single curve with each tool (Figure 1).
Based on CF measurements made along with this curve,
assimilation is expected to be Rubisco‐limited for Ci below
500 μmolmol−1 (where ϕPSII increases with Ci) and TPU‐limited
for Ci above 500 μmolmol−1 (where ϕPSII decreases with Ci),
with a possible narrow region of RuBP‐regeneration limitations
near 500 μmolmol−1, although there is no clear range where
ϕPSII is constant with Ci (Figure 1a). Reverse sensitivity of An to
Ci is evident above 500 μmolmol−1 (Figure 1b). This curve was
measured with Qin = 800 μmolm−2 s−1, which is much brighter
than the typical light experienced by this leaf during its devel-
opment, so it may be expected that few or none of the measured
points are limited by RuBP regeneration (Sharkey 2019). These
features may pose a challenge to fitting tools, and any estimated
values of J will likely be particularly unreliable.

The curve fit from PCE calculator (Figure 1f and Supporting
Information S1: Table S1), a manual spreadsheet tool, follows
the reasoning above; all points where Ci is below 400 μmol
mol−1 are identified as Rubisco‐limited (A A=n c) and all points
for Ci above 500 μmolmol−1 are identified as TPU‐limited
(A A=n p), with a single point at Ci ≈ 450 μmolmol−1 identified
as RuBP‐regeneration‐limited (A A=n j). The presence of an
RuBP‐regeneration‐limited point is somewhat uncertain, since
assigning this point to Rubisco limitations was found to just
slightly increase the sum of squared residuals from 9.572
to 9.577. The curve fit from PhotoGEA makes the same as-
signments of rate‐limiting processes as PCE calculator
(Figure 1b and Supporting Information S1: Table S1). The curve
fits from plantecophys and photosynthesis have no points where
A A=n j (Figure 1c,d and Supporting Information S1: Table S1).
The msuRACiFit package identifies three points at low Ci as

RuBP‐regeneration‐limited but none where Ci is near
500 μmolmol−1 (Figure 1e and Supporting Information S1:
Table S1). While the fitted values of An from msuRACiFit are
similar to those from PhotoGEA and PCE calculator, the plan-
tecophys and photosynthesis packages are unable to capture the
reverse sensitivity at high Ci because they do not fit αold, αG, αS
or αT .

Parameter estimates vary between the curve fitting tools
(Figure 1g–j), where differences in best‐fit values can be at-
tributed to differences in fitting approaches, TPU model equa-
tions, and code implementation. PhotoGEA is the only tool that
returns a confidence interval for each estimated parameter.
Major differences occur in the apparent J values (Figure 1h).
PhotoGEA indicates a lower confidence limit but no best‐fit
value or finite upper confidence limit for apparent J

(Figure 1b). An infinite upper confidence limit means that J can
be increased indefinitely without negatively impacting the fit
quality; in other words, that no part of the curve unambiguously
exhibits RuBP‐limited assimilation. In the fit for this curve, Ac

is just slightly higher than Aj at the single RuBP‐limited point,
so increasing J would change that point's identification to
Rubisco‐limited but would not substantially reduce the fit
quality. When the upper limit for a parameter is infinite, Pho-
toGEA considers its estimate to be unreliable and does not
return a value. Note that this uncertainty in J was apparent in
the PCE calculator fit, as discussed above; yet, PCE calculator
does not quantify the uncertainty or provide a clear way to
indicate whether the parameter estimate is reliable. Instead, it
returns a J value just above the lower limit estimated by Pho-
toGEA. Compared to PhotoGEA,msuRACiFit identifies different
points as being RuBP‐limited, but its best‐fit J value is also just
above the lower limit estimated by PhotoGEA. Like PhotoGEA,
the plantecophys tool does not return a best‐fit value for J .

Although the photosynthesis tool does not indicate any points
where A A=n j, it nevertheless returns a best‐fit value for
apparent J . This is related to a subtlety of the exhaustive and
manual approaches to curve fitting, which can produce
‘inadmissible fits’ where ‘there is a contradiction between the
limitation states designated in advance and the limitation states
calculated with the optimized parameters’ (Gu et al. 2010). For
this curve, the fit from photosynthesis designates points whereCi
lies between 543 and 741 μmolmol−1 as being RuBP‐
regeneration‐limited, but the points in this range have A A=n p

(Supporting Information S1: Section S1.4). Such ‘inadmissible
fits’ cannot occur when using a full‐curve fitting method since
the limiting states are always determined from the parameter
values themselves in this approach. Although inadmissible fits
can be detected and rejected when using the exhaustive fitting
method (Gu et al. 2010), implementations of this method do not
always do this.

3.2 | Comparing Fits Between PhotoGEA and
Other Peer‐Reviewed Tools for Many C3 A‐Ci

Curves

Estimating parameters from a set of CO2 response curves mea-
sured at different Qin provides a more comprehensive way to
compare the fitting tools (Figure 2 and Supporting Information
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S1: Figures S1–S9). At low Qin, RuBP regeneration is the main
limiting factor across most values of Ci, and as Qin increases,
more points become limited by Rubisco activity or TPU
(Figure 2a). Thus, this type of data set poses a challenge to fitting
tools, which must be able to identify rate‐limiting factors across a
set of curves that may each include different factors. One way to
characterize the curve fits is by calculating the root mean square
error (RMSE), defined by

 ( )
N

A ARMSE =
1

− ,
k

N
k k

=1
obs mod

2
(1)

where Ak
obs and A

k
mod are the kth observed and modelled values

of An in a response curve with N points. Smaller values of
RMSE indicate a closer agreement between the measured and
fitted assimilation rates. Across all measured curves, PhotoGEA
generally produces the smallest RMSE values (Figure 2b),
though each fitting tool produces a similar RMSE. However, the
fits from photosynthesis at the two lowest light levels have a

much larger RMSE, exceeding the RMSE from PhotoGEA by
10–100 times. Similar results are found when comparing values
of the Akaike information criterion (AIC), a related fit quality
indicator that accounts for the number of free parameters in
each fit (Supporting Information S1: Figure S6).

The estimated parameter values from each tool can also be
compared (Figure 2c–f), where estimates from PhotoGEA
(αG,αS) and msuRACiFit should be distinguished from the
other tools because they use a different version of the FvCB
model equations. Although estimates of apparent J from each
tool show a similar dependence on Qin, demonstrating the
well‐known hyperbolic relationship (von Caemmerer 2000),
some differences are evident (Figure 2c). When fitting αold,
PhotoGEA indicates that J cannot be estimated reliably for any
curves with Qin of 800–1000 μmol m−2 s−1 and only returns a
lower confidence limit in this range, as shown previously for
one curve (Figure 1). Values estimated using PCE calculator
and photosynthesis agree well with those from PhotoGEA
(αold), with the exception of curves where PhotoGEA (αold)

FIGURE 1 | Fitting a single C3 A‐Ci curve (designated ‘800 – wt‐5 – mcgrath1’) with several software tools. (a) ϕPSII versus Ci measured

simultaneously with gas exchange. (b–f) Fits of An versus Ci made using PhotoGEA (allowing αold to vary), plantecophys, photosynthesis, msuRACiFit

and PCE calculator, respectively. All lines in (a–f) are composed of straight segments connecting adjacent points and are intended only as guides to

the eye. (g–j) Best‐fit values and 95% confidence intervals of apparent Vcmax, apparent J , apparent Tp, and RL values at leaf temperature (27°C),

respectively, as determined by the fit from each tool, where results from PhotoGEA (allowing αG and αS to vary) are also included. Confidence

intervals for plantecophys and photosynthesis were calculated from the standard error (SE) as best‐fit value ± 1.96 × SE. [Color figure can be viewed at

wileyonlinelibrary.com]
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determined that a reliable estimate could not be made. The
plantecophys tool only provided J estimates for curves withQin

below 800 μmol m−2 s−1 (Supporting Information S1: Fig-
ure S8). When fitting αG and αS, PhotoGEA indicates that J
cannot be estimated reliably for any curves with Qin of
800–1200 μmol m−2 s−2; estimates outside this range are in
good agreement with those from msuRACiFit, which returned
an estimated value for every curve.

Each tool was able to estimate apparentVcmax from each curve,
and the estimates from each tool have a similar Qin depen-
dence as the J estimates, where Vcmax increases with Qin

(Figure 2d). Across all values of Qin, the estimated values from
PhotoGEA (αold), PCE calculator and plantecophys are nearly
identical, and values from photosynthesis only diverge at a few
points. Estimates from PhotoGEA (αG,αS) and msuRACiFit also
agree well.

A similar trend with Qin was again observed for estimated val-
ues of Tp (Figure 2e). Estimates from PhotoGEA (αold) and PCE
calculator are nearly identical and neither indicate any TPU
limitations for Qin below 300 μmolm−2 s−1. In contrast, the
plantecophys, PhotoGEA (αG,αS) and msuRACiFit tools returned
Tp estimates for all curves, while photosynthesis did not indicate
TPU limitations for Qin below 450 μmolm−2 s−1 (with one ex-
ception at Qin = 100 μmolm−2 s−1) (Supporting Information S1:
Figure S9). The plantecophys or photosynthesis tools over-
estimate Tp as compared to the other packages, likely because
they do not fit αold, αG, αS or αT .

Estimated values of RL show no clear trend with Qin, although
differences in magnitude are apparent between the packages
(Figure 2f). Values from PhotoGEA (αold), PCE calculator,
plantecophys and photosynthesis are generally similar, but val-
ues from PhotoGEA (αG,αS) and msuRACiFit are much higher

FIGURE 2 | Fitting 36 C3 A‐Ci curves measured at a range of Qin values with several different software tools. (a) Average CO2 response

curves at nine values ofQin. Error bars show standard error of the mean. Values ofQin with only one A‐Ci curve were excluded. (b) Average root

mean square error (RMSE) values versus Qin as calculated from each tool's fits. PCE calculator is excluded since the fits from this tool did not

use all measured points and its RMSE values are therefore not comparable to the others. (c–f) Average best‐fit values of apparent J , apparent
Vcmax, apparent Tp and RL at leaf temperature (27°C), respectively, versus Qin, as determined by each fitting tool. Black error bars correspond to

average confidence intervals determined using PhotoGEA (allowing αold to vary). Some error bars have infinite upper limits and extend past the

panel. Each point in (b–f) is an average value from 1 to 4 response curve fits. Statistical error bars are excluded for clarity, since they are similar

across all fitting tools. [Color figure can be viewed at wileyonlinelibrary.com]
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than those from other packages and do not agree well with each
other.

3.3 | The PhotoGEA Approach to Fits and
Confidence Intervals

PhotoGEA uses maximum likelihood regression with derivative‐
free optimizers, a reliable fitting method that facilitates the cal-
culation of useful non‐Gaussian confidence intervals from like-
lihood ratios (Doganaksoy 2021). The likelihood (L) can be
thought of as the probability of observing a set of measured data,
assuming a particular model parameterization (P) and level of
measurement noise (σ). In maximum likelihood regression, P is
varied to maximizeL, enabling best estimates of the parameter
values. The best‐fit parameter estimates from maximum likeli-
hood regression do not depend on σ and always agree with the
best‐fit parameters from least squares regression, a process that
minimizes the sum of squared residuals (SSR). Details of confi-
dence interval calculations are provided in the Supplemental
Information (Supporting Information S1: Section S8).

In the context of CO2 response curve fitting, the dependence of
L (or SSR) on P can take a variety of complicated shapes that
can pose issues for optimization algorithms (Figure 3). Along
some dimensions, there may be a shape with a clear peak, which
occurs for all parameters (Figure 3a–e) when fitting the curve
shown in Figure 1. However, the likelihood can also take its
maximum value along a wide range of values, as shown for
apparent J when fitting a different curve (Figure 3f). This hap-
pens when the corresponding rate‐limiting process is not evident,
and this situation is particularly challenging for optimizers em-
ploying quasi‐Newton or gradient descent methods, which use
the slope of the line to determine which direction to proceed.
When there are regions of parameter space where the gradient of
L or SSR is zero, multiple directions appear the same. This issue,
coupled with the potential discontinuities and multiple minima,
present challenges for these algorithms and may prevent them
from producing close fits. On the other hand, derivative‐free
optimizers do not rely on the slope and are better able to handle
these situations. In the case where maximum likelihood occurs
for a range of parameter values, such optimizers will report an
arbitrary value from the acceptable range. For example, for the
scenario in Figure 3f, the optimizer returned J ≈ 960 μmolm−2

s−1, but any value greater than approximately 120 μmolm−2 s−1

would have also maximized the likelihood.

PhotoGEA's fitting functions are able to identify such arbitrary
parameter values by calculating likelihood ratio confidence
intervals (Supporting Information S1: Section S8). In PhotoGEA's
fitting procedure, σ is initialized to a value of one, and this value
is used to find the best‐fit values of the parameters P . The value
of σ does not affect the best‐fit estimation of P, so this choice is
arbitrary. Then the RMSE of the best fit (Equation 1) is used as
an estimate of σ , enabling the calculation of true likelihood
values. Finally, each parameter is varied independently to find
the range of values where the likelihood remains above 14.7% of
its highest value ( maxL ). For parameters where the likelihood
takes a Gaussian shape (Figure 3a–c), relative likelihood confi-
dence intervals calculated with this threshold closely approxi-
mate 95% confidence intervals (Rossi 2018). Note that this

method for calculating confidence intervals only relies on like-
lihood calculations, and is therefore independent of the optimizer
used to identify best‐fit parameters. In other words, derivative‐
free full‐curve fitting and likelihood ratio confidence interval
calculations are independent features, and, in principle, likeli-
hood ratio confidence intervals could be combined with gradient‐
based fitting approaches.

This approach becomes especially valuable when one or more
rate‐limiting process is not clearly evident in a curve (Figure 3d,e).
In this case, the upper limit of the confidence interval for the
related parameter extends to infinity, indicating that the best‐fit
value is arbitrary or otherwise not reliable and that the limitation
may not be present (Figure 1h). When PhotoGEA identifies a
confidence interval with no upper limit, the corresponding
parameter is set to NA (‘not available’) to indicate that its value
could not be reliably estimated. In tests of simulated C3 A‐Ci

curves, this ability greatly reduces PhotoGEA's rate of ‘false posi-
tives’ as compared to the other fitting tools (Supporting Informa-
tion S1: Section S10). Users can disable this behaviour if desired.

When fitting CO2 response curves, such non‐Gaussian confi-
dence intervals are more reliable than ones calculated by
assuming Gaussian distributions. Standard errors, as returned
by the widely‐used R functions lm, nlm and nls, are calculated
from the Hessian matrix (i.e., the curvature) of the SSR around
the best‐fit value, and are based on an assumption that the
likelihood follows a Gaussian distribution. This assumption is
often violated in photosynthetic response curve fitting
(Figure 3d–f). For example, the curvature near the best‐fit value
may be undefined, preventing an uncertainty estimate alto-
gether (Figure 3f). The curvature may also be misleading; esti-
mating a standard error from the curvature is equivalent to
assuming a Gaussian likelihood shape, and can cause
inaccurate estimates of the true confidence interval (Figure 3e).
In tests of simulated C3 A‐Ci curves, PhotoGEA's non‐Gaussian
confidence intervals are much more likely to contain the true
parameter values than those calculated assuming Gaussian
distributions (Supporting Information S1: Section S10).

3.4 | Estimating Mesophyll Conductance by
Fitting C3 A‐Ci+CF Curves With Variable J

In the FvCB model, the actual whole‐chain electron transport
rate (Jactual) required to support a given CO2 assimilation rate is

⋅
⋅ ⋅( )
( )

J A R
C

C
= ( + )

4 − + 8 Γ*

− − Γ*
,n L

i
A

g

i
A

g

actual

n

mc

n

mc

(2)

where gmc is the mesophyll conductance to CO2 diffusion and Γ* is
the CO2 compensation point in the absence of non‐photorespiratory
CO2 release. This relationship holds regardless of which process is
limiting assimilation (Harley et al. 1992). When assimilation is
limited by RuBP regeneration, Jactual takes its maximum value for a
given light level and leaf temperature (J J=actual ); otherwise,
J J<actual . Assuming that the electron transport rate estimated
from chlorophyll fluorescence measurements (JF) is representative
of the actual rate, values of Jactual can be estimated according to
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⋅ ⋅J J τ Q φ= = ,F in PSIIactual (3)

where τ is a dimensionless proportionality factor commonly ex-
pressed as ⋅τ α β= , where α is the leaf absorptance and β is the
fraction of light partitioned to photosystem II (often assumed to
be 0.5) (Moualeu‐Ngangue et al. 2017), or as a ‘lumped’ param-
eter (s) that includes other aspects of electron transport (Yin
et al. 2009). Equations (2) and (3) can be solved for gmc, enabling
estimates of mesophyll conductance and Cc from combined gas
exchange and chlorophyll fluorescence measurements:

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

g
A

C
=

−
,mc

n

i
τ Q φ A R

τ Q φ A R

Γ* ( + 8 ( + ))

− 4 ( + )

in PSII n L

in PSII n L

(4)

and

C C
A

g
= − .c i

n

mc

(5)

This approach is commonly referred to as the Variable J
method following its original description (Harley et al. 1992).
Independent estimates of τ can be used in Equations (4) and
(5) to calculate gmc and Cc. Alternatively, τ can be varied along

with the FvCB model parameters when fitting an A‐Ci+ CF
curve, where Equations (4) and (5) enable simultaneous esti-
mates of gmc, Cc, and chloroplastic values of FvCB model
parameters (Moualeu‐Ngangue et al. 2017). PhotoGEA allows
users to take either approach, where the former does not
involve any fitting and can be performed with the calcula-
te_c3_variable_j function, and the latter can be performed with
fit_c3_variable_j.

The complicated shape of the likelihood function for Variable
J fitting causes frequent fitting failures when using quasi‐
Newton or gradient descent optimizers, preventing estimates
of gmc in 6%–24% of curves (Moualeu‐Ngangue et al. 2017). As
with C3 A‐Ci curves, PhotoGEA alleviates this issue by using
maximum likelihood regression and derivative‐free optimi-
zers when fitting C3 A‐Ci + CF curves, and it expresses
parameter uncertainties using confidence intervals. Outputs
from fit_c3_variable_j include estimated values of the FvCB
model parameters and τ , along with An, Ac, Aj, Ap, gmc, J and
Jactual at each point in the curve, enabling users to evaluate
the fit results on a Ci or Cc basis (Figure 4a,b) and to inves-
tigate changes in gmc and Jactual with changes in CO2 con-
centration (Figure 4c,d). As expected, J J=actual when
assimilation is limited by RuBP regeneration and J J<actual

for other points (Figure 4d). Across the curves analysed here,

FIGURE 3 | Determining confidence intervals from the likelihood ratio ( / maxL L ). (a–e) Likelihood ratio as each of apparent Vcmax,

apparent Tp, RL, αold and apparent J vary around their best‐fit values, as determined by PhotoGEA for the curve in Figure 1 (designated ‘800 –
wt‐5 – mcgrath1’). The arrow in (d) shows a ‘kink’ where the likelihood deviates from a Gaussian distribution. The dotted line in (e) shows a

Gaussian fit to the likelihood ratio near the peak. The likelihood ratio confidence interval extends to infinity but the Gaussian interval would

only extend to approximately 149 μmol m−2 s−1. Inset shows an expanded version of the likelihood ratio and fit near the peak. (f) Likelihood

ratio versus apparent J for another curve (designated ‘1000 – wt‐1 – mcgrath1’). [Color figure can be viewed at wileyonlinelibrary.com]
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the fits generally produce similar trends of gmc and Ci, with
the exception of the lowest Ci value, where there were large
differences between the curves (Figure 4e and Supporting
Information S1: Figures S10–S13). At the second‐lowest Ci
value, the estimated gmc values were negative for all curves. A
negative gmc indicates that gas flows from smaller to larger
concentrations, at odds with normal diffusion (Equation 5).
This is consistent with the understanding of gmc as an
‘effective’ conductance representing two nonsequential gas
flow paths, which can become negative under certain cir-
cumstances when A < 0n (Tholen et al. 2012). The calculated
confidence intervals indicate tight constraints on the value of
τ for each curve, although the individual best‐fit τ values vary

between curves, where the coefficient of variance is 0.042/
0.426 = 9.9% (Table 2).

3.5 | Fitting C4 A‐Ci Curves With Both
Mechanistic and Empirical Models

Across the literature, both mechanistic and empirical models
are used to represent net CO2 assimilation in C4 plants and to fit
C4 A‐Ci curves. In the mechanistic von Caemmerer model for
C4 leaves (von Caemmerer 2000; 2021), assimilation can be
limited by phosphoenolpyruvate (PEP) carboxylase activity,
PEP regeneration, Rubisco activity, or electron transport, and

FIGURE 4 | Fitting soybean A‐Ci+CF curves using the fit_c3_variable_j function from PhotoGEA. (a–d) Results from one curve (designated

‘2022 – ripe2 – 4’) showing (a,b) measured and fitted assimilation rates on a Ci and Cc basis, (c) gmc versus Ci, and (d) Jactual and J versus Ci.

(e) Average gmc versus Ci from fits to eight different curves, where error bars represent the standard error. Dashed vertical lines indicate the

approximate Ci or Cc at the operating point (where Ca is 420 ppm). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 | Best‐fit values of τ estimated from each of 10 soybean A‐Ci+CF curves using the fit_c3_variable_j function from PhotoGEA, along

with lower and upper limits of the associated confidence intervals.

Curve ID τ lower limit (dimensionless) τ best‐fit (dimensionless) τ upper limit (dimensionless)

2021 ‐ ripe1 ‐ 5 0.412 0.415 0.415

2021 ‐ ripe2 ‐ 1 0.427 0.431 0.431

2021 ‐ ripe2 ‐ 5 0.462 0.465 0.465

2021 ‐ ripe3 ‐ 4 0.370 0.372 0.372

2021 ‐ ripe4 ‐ 4 0.400 0.402 0.402

2022 ‐ ripe15 ‐ 1 0.432 0.434 0.435

2022 ‐ ripe15 ‐ 4 0.499 0.502 0.506

2022 ‐ ripe2 ‐ 1 0.443 0.446 0.446

2022 ‐ ripe2 ‐ 4 0.431 0.433 0.433

2022 ‐ ripe2 ‐ 5 0.359 0.362 0.362

Note: The mean and standard deviation of the best‐fit values are 0.426 and 0.042, respectively.
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key parameters that can be estimated from a curve fit include
the maximum rate of PEP carboxylase activity, the maximum
rate of Rubisco activity, and the potential whole‐chain electron
transport rate (Vpmax,Vcmax and J ). When assimilation is limited
by PEP carboxylase, PEP regeneration, Rubisco activity, or light,
we denote the corresponding rates by Apc, Apr , Ar and Aj,
respectively. In the model, the assimilation rate co‐limited by
PEP carboxylase, PEP regeneration, and Rubisco activity is re-
ferred to as the enzyme‐limited rate and denoted by Ac, and the
overall rate is given by the minimum of Ac and Aj. See Sup-
porting Information S1: Section S2 for a full description of the
model equations.

PEP carboxylase activity generally limits An at low values of Ci,
and the initial part of a C4 A‐Ci curve plays the largest role in
determining estimates of Vpmax. The remaining processes limit
An at high values of Ci. However, they each produce a similar
dependence of An on Ci, so in practice, it is rarely possible to
distinguish between them when fitting a curve. Many studies,
such as Markelz et al. (2011), resolve this issue by using an
alternative empirical model that represents the response of An
to Ci as a non‐rectangular hyperbola (Supporting Information
S1: Section S3). Rather than estimatingVcmax or J , this approach

enables estimates of Vmax, a parameter that has no mechanistic
basis but is related to the maximum net CO2 assimilation rate
(Amax) by A V R= − Lmax max . Even when taking the empirical
approach to Vmax, the mechanistic von Caemmerer model is
used to estimate Vpmax from the low Ci response by fitting a
subset of points where Ci lies below a threshold value, often
chosen to be 50–60 μmol mol−1 (Supporting Information S1:
Section S2.5).

The empirical hyperbola is widely used, likely due to its sim-
plicity, but it does not produce estimates of meaningful bio-
chemical parameters. In PhotoGEA, it is straightforward to fit
the mechanistic von Caemmerer model using the fit_c4_aci
function, or the empirical hyperbolic model using the fit_-
c4_aci_hyperbola function. This flexibility enables users to
compare different approaches to fitting and parameter estima-
tion (Figure 5a–d). Following the semi‐empirical approach, Apc
can be fit to the measured points with Ci ≤ 60 μmolmol−1 to
estimate Vpmax (Figure 5a) and a hyperbola can be fit to the
entire curve to estimate Vmax (Figure 5b). Taking the mecha-
nistic approach, the von Caemmerer model can be fit to the
entire curve, assuming either Rubisco limitations to estimate
Vpmax and Vcmax, or light limitations to estimate Vpmax and J

FIGURE 5 | Fitting maize and sorghum A‐Ci curves using the fit_c4_aci and fit_c4_aci_hyperbola functions from PhotoGEA. (a–d) Fits of a single
sorghum curve (designated ‘sorghum – ripe1 – 2 – 2021’) showing estimated parameter values in units of μmol m−2 s−1. (a) Fitting the low‐Ci portion
with the mechanistic model to estimate Vpmax. (b) Fitting the whole curve with the empirical hyperbola to estimate Vmax . (c) Fitting the whole curve

with the mechanistic model (assuming Rubisco limitations at high Ci) to estimate Vpmax and Vcmax. (d) Fitting the whole curve with the mechanistic

model (assuming light limitations at high Ci) to estimate Vpmax and J . (e, f) Vcmax and J , respectively, plotted against Vmax as estimated from each

curve in the full set. (g)Vpmax estimated from whole curve fits assuming either Rubisco or light limitations at highCi, plotted againstVpmax estimated

from the low‐Ci portion of each curve. Lines in (e–g) show linear fits (see Supporting Information S1: Table S2 for slopes, intercepts, R2 values, and p‐
values). [Color figure can be viewed at wileyonlinelibrary.com]
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(Figure 5c,d). Fits made assuming either Rubisco or light lim-
itations are similar in quality, illustrating the general difficulty
in distinguishing between these limiting factors. Because of this,
the estimated Vcmax and J values should each be interpreted as
lower limits to the true values. Estimates of Vpmax depend on
whether they are made from the lowCi points alone (Figure 5a),
from the whole curve assuming Rubisco limitations at high Ci
(Figure 5c), or from the whole curve assuming light limitations
at high Ci (Figure 5d).

This procedure can be applied to multiple maize and sorghum A‐Ci

curves to identify general differences between the fitting methods
and species (Figure 5e–g and Supporting Information S1:
Figures S14–S18). SinceVmax,Vcmax and J are all determined by the
plateau in An at highCi, correlations between them are expected. In
fact, the estimated values of Vcmax and J are each positively cor-
related withVmax, and the relationship between them is different for
maize and sorghum (Figure 5e,f and Supporting Information S1:
Table S2). In general,Vmax values are slightly larger thanVcmax and
much smaller than J . Estimates of Vpmax from whole‐curve fits are
also correlated with estimates of Vpmax made from just the low Ci
points (Figure 5g). Estimates of Vpmax made by assuming light
limitations is generally in close agreement with the low Ci esti-
mates, while estimates of Vpmax made by assuming Rubisco limi-
tations are typically larger. This difference is related to a detail of the
mechanistic model, where co‐limitations between PEP carboxylase
and Rubisco are included, but co‐limitations between PEP carbox-
ylase and electron transport are not. Co‐limitation causes An to be
lower than either Apc or Ar (Figure 5c), requiringVpmax to be larger
to achieve the same An as compared to the light‐limited case where
there is a sharp transition from A A=n pc to A A=n j (Figure 5d).

4 | Discussion

Here, we have introduced PhotoGEA, an R package with tools for
fitting CO2 response curves, where each tool estimates parameter
values using derivative‐free optimizers and calculates non‐
Gaussian confidence intervals from likelihood ratios. Unreliable
estimates for some parameters, such as J ,Vcmax,Tp, are identified
by confidence intervals whose upper limits extend to infinity,
ensuring that only reliable values are returned. These features
are not found in any other fitting tools. To illustrate the utility of
this approach, the real‐world performance of PhotoGEA's C3 A‐Ci

fitting tool was compared to several other leading tools (PCE
calculator, plantecophys, photosynthesis and msuRACiFit) using a
set of tobacco A‐Ci curves. These curves were measured across a
range ofQin, and some exhibit TPU limitations and even reverse
sensitivity. Due to the presence of TPU limitations, only tools
capable of modelling TPU‐limited assimilation were included in
the test. In these comparisons, PCE calculator can be considered
as the ‘benchmark’ method. In contrast to the other tools, where
algorithms determine the limiting processes at each point, a plant
ecophysiologist ensures that the assignments are biologically
reasonable, based on trends in the measured An and φPSII values
with Ci.

Across all the curves, PCE calculator and PhotoGEA (αold) make
nearly identical estimates for J , Vcmax, Tp and RL (Figure 2c–f).
This includes curves where manual analysis showed that no
points were TPU‐limited (and hence Tp could not be estimated).

Such remarkable agreement shows that PhotoGEA's algorithm
generally makes the same limiting process identification as an
expert scientist. Some disagreement between PCE calculator
and PhotoGEA (αold) occurs for Qin values between 800 and
1000 μmol m−2 s−1, where PhotoGEA (αold) indicates that reli-
able J estimates cannot be made. Yet, even for these curves, the
estimates are consistent in the sense that the lower limits from
PhotoGEA (αold) lie below the PCE calculator estimates. It is
possible that PhotoGEA's algorithm is overly cautious here;
however, in this range, the J values estimated by PCE calculator
and photosynthesis show substantial differences, despite close
agreement at all other values of Qin, suggesting that PhotoGEA
(αold) was correct in identifying these curves as not exhibiting
unambiguous RuBP‐regeneration limitations. In fact, an in‐
depth analysis of one curve in this range shows that the iden-
tification of an RuBP‐regeneration‐limited point in the PCE
calculator fit was uncertain (Section 3.1). No other tool matched
the PCE calculator outputs as closely as PhotoGEA (αold),
especially regarding estimates of Tp, where some tools returned
estimates for curves where PCE calculator did not find any TPU
limitations (plantecophys, msuRACiFit and PhotoGEA [αG,αS]),
and one did not return estimates for curves where PCE calcu-
lator did find TPU limitations (photosynthesis). Yet, a key
advantage of PhotoGEA over PCE calculator is that PhotoGEA
fits are fully automated and do not rely on user judgement
when identifying limiting processes.

Other potential issues with some tools were discovered through
this comparison. The plantecophys and photosynthesis tools
returned ‘inadmissible fits’ for 30 and 19 of the 36 curves,
respectively (Supporting Information S1: Section S4.1). At the
two lowest Qin, the modelled assimilation rates returned by the
photosynthesis tool were often not close to the measured rates,
leading to large RMSE values (Figure 2b and Supporting
Information S1: Figure S3). However, parameter estimates from
these tools were often reasonable for curves where inadmissible
fits or high RMSE values were returned, indicating a disconnect
between the apparent fit quality and the reliability of its
parameter estimates. Thus, in practice, these issues interfere
with a user's ability to evaluate whether a fit from one of these
tools is reasonable. It is likely they stem from implementation‐
specific details that can be addressed in future releases of these
tools.

It is also clear that the TPU model used by each tool plays a
large role in determining its parameter estimates, even beyond
values of Tp. The two tools using the updated model for TPU
(msuRACiFit and PhotoGEA [αG,αS]) tend to produce higher
estimates of J and RL than the other tools, and they always
return estimates of Tp, even for curves measured withQin below
300 μmolm−2 s−1. Visual inspection of these curves and their
corresponding ϕPSII values indicates no evidence for TPU limi-
tations (Supporting Information S1: Figure S5), as indicated by
the PCE calculator results. Estimated values of Tp in this range
when using the updated TPU model are thus most likely
the result of overfitting because the updated TPU model has one
additional parameter compared to the older one. It may be the
case that the updated TPU model requires more ‘intensive’
response curves to ensure reliable results. On the other hand,
plantecophys and photosynthesis tend to estimate higher Tp as
compared to the other tools, likely because they cannot fit
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reverse sensitivity to CO2 via αold, αG, αS or αT . Although it is
possible to manually set nonzero αold for each curve using these
tools, this process is cumbersome and not practical for large
data sets with many curves.

One practical complication that arose when comparing these
tools is that each R package uses different variable names, has
different input requirements, and returns different output types,
necessitating a large number of reformatting operations in the
code. Interoperability across packages can likely be improved
through increased standardization in future releases of these
packages, including PhotoGEA (Ely et al. 2021; Tholen 2024).

A potential shortcoming of the comparisons above is that the
true values of each parameter are not known beforehand. To
address this, 600 simulated C3 A‐Ci curves were generated and
fit with each tool (Supporting Information S1: Section S10). For
these simulated curves, the true parameter values are known
beforehand, as well as the number of points in each curve that
are limited by Rubisco activity, RuBP regeneration, or TPU. In
general, results from simulated curves are similar to those dis-
cussed above. In brief, PhotoGEA is shown to produce the
closest parameter estimates, and is best able to identify when
one or more potential limiting process is not evident in a curve.
Estimates of RL made using the updated TPU model (PhotoGEA
[αG,αS] and msuRACiFit) are less accurate than other estimates,
and in general, estimates made using this model are prone to
false positives (where a parameter estimate is returned even
though no points in the curve are limited by the corresponding
process), illustrating the difficulties associated with using it for
curve fits. The photosynthesis tool is prone to false negatives
when estimating Tp, while plantecophys is prone to false posi-
tives when estimatingTp. This discrepancy highlights the role of
implementation‐specific code details in determining a tool's
results, since plantecophys and photosynthesis both use an ex-
haustive approach with the same TPU model. For a detailed
discussion of these fits, see Supporting Information S1:
Section S10.

The measured tobacco A‐Ci fits also revealed clear trends in J ,
Vcmax and Tp with Qin, consistently observed across results from
all tools (Figure 2c–e). Although the dependence of J on Qin is
well‐known and commonly described using a non‐rectangular
hyperbola (von Caemmerer 2000), the other responses are less
understood, and no established equations are available for
describing them. For Vcmax, the Rubisco concentration (nRubisco)
and carboxylation rate constant (kcat) are not expected to
change with Qin. Instead, this trend may be due to changes in
the number of active Rubisco sites (Et) or in mesophyll con-
ductance; both influence apparent Vcmax and are known to
depend on environmental conditions such as Qin (Sage
et al. 2002; Théroux‐Rancourt and Gilbert 2017). The trend inTp
may indicate coordination of TPU with Rubisco activity and
RuBP regeneration limitations (Sharkey 2019). Estimated values
of αold also increase with Qin, and even reach α > 1old for some
curves (Figure 3d and Supporting Information S1: Figure S7),
indicating a stronger degree of reverse sensitivity at high light.
When treated as a mechanistic factor, αold is expected to be
between zero and one. Yet, because of measurement noise, it
may be the case that the best‐fit value lies outside this range.
Constraining αold to this range can be done in PhotoGEA, but

doing so could introduce a bias to the fits. Values above one
have been noted before, and it has been suggested that because
of this, αold should ‘be considered an arbitrary parameter useful
for the comparison of the degree of reverse sensitivity, but
without a mechanistic basis’ (Sharkey 2016). Similar constraints
apply to the values of αG, αS and αT (Busch 2020), and these
constraints can also be enforced in PhotoGEA, although they
were not enforced here to avoid bias (Supporting Information
S1: Figure S7).

Compared to fitting C3 A‐Ci curves, fewer tools are currently
available for applying the Variable J fitting method to C3 A‐
Ci+CF curves or for fitting C4 A‐Ci curves. Thus, the fit_c3_-
variable_j and fit_c4_aci functions from PhotoGEA fulfil an
important need. Sections 3.4 and 3.5 illustrate some of the in-
sights that can be gained through these tools. For example,
Variable J fits are shown to place narrow constraints on values
of τ , while τ can vary by more than 10% between tobacco leaves
(Table 2). Variations in absorptance between tobacco leaves of
similar age and health, grown in the same environment, are
typically smaller than 10%, indicating that other sources of
variation in τ must be present. It should be noted that Equation
(3) is a simplification that does not include alternative electron
acceptors or nonlinear electron transport (Flexas et al. 2007;
Gilbert et al. 2012; van der van der Putten et al. 2018); thus the
parameter β as used in Equation (3) likely represents the
effective influence of multiple processes beyond the partitioning
of light energy to Photosystem II, and its value is difficult to
estimate or measure. Such processes likely contribute to varia-
tion in effective values of β, and hence to the observed variation
in τ . These results emphasize the necessity of a reliable Variable
J fitting tool that does not require a β estimate, and highlight
the inherent uncertainty in assuming a β value of 0.5.

Another insight is that empirical estimates of Vmax from C4 A‐Ci

curves can likely be related to the mechanistic parametersVcmax
and J through crop‐specific correlations (Figure 5e–f), and that
values of Vpmax and Vcmax estimated from curves can be com-
pared to in vitro biochemical assay measurements to determine
which fitting assumptions regarding limitations at high Ci are
most appropriate. For maize, in vitro Vpmax at 25°C has been
reported to be 193–243 μmolm−2 s−1 (Sonawane et al. 2018;
Salesse‐Smith et al. 2018). Curve fits made at low Ci or by
assuming light limitations result in substantially lower esti-
mates (Vpmax < 125 μmolm−2 s−1), while curve fits made
assuming Rubisco limitations reach up to Vpmax = 185 μmol
m−2 s−1 (Figure 5g), suggesting that Rubisco limitations may be
a more reasonable assumption and that the J estimates are
lower bounds on the true value, although this would require
further investigation to verify.

Beyond this, because these fitting functions are implemented in
R, it is straightforward to apply them to sets of curves using
different settings or parameter values, enabling users to inves-
tigate the sensitivity of fitted parameter values to key inputs like
Γ* (for Variable J) and bundle sheath conductance (for C4). This
can help to generate a more nuanced understanding of when
outputs such as gmc are most reliable. For example, it has been
suggested that whenever the derivative dC dA/c n is below 10 or
above 50 bar m2 s mol−2, mesophyll conductances estimated
with Equation (4) may be unreliable due to uncertainties in the
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value of Γ* (Harley et al. 1992). This simple rule could be re-
placed by a sensitivity analysis showing the range of gmc values
estimated from fits with different assumed values of Γ*.

Besides offering a unique and reliable approach to estimating
parameter values from CO2 response curves, PhotoGEA enables
automation for quickly analysing large data sets, uses the latest
models of photosynthetic biochemistry and provides detailed
example scripts to increase its accessibility to researchers who
may not be R experts. In the particular case of C3 A‐Ci curves,
PhotoGEA produced nearly identical results as the PCE calcu-
lator tool, but without requiring time‐consuming manual
operations or relying on user judgement. Finally, we note that
PhotoGEA has additional features not discussed here, such as
functions for estimating Ball‐Berry model parameters (Ball
et al. 1987), calculating limitations to C3 photosynthesis
(Warren et al. 2003; Grassi and Magnani 2005), fitting response
curves with the Laisk method (Laisk 1977; Walker and
Ort 2015), and analysing isotope discrimination measurements
from tunable diode laser systems (Ubierna et al. 2018; Busch
et al. 2020). Thus, PhotoGEA will be of great use to many plant
scientists, and in fact, it has already played a key role in several
studies (Salesse‐Smith, Lochocki, et al. 2024; Salesse‐Smith,
Adar, et al. 2025; Pelech et al. 2025).
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