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Abstract

Plants in natural environments often face unpredictable, co-occurring stresses, such as heatwaves and droughts, a
trend that is intensifying with climate change. Reflectance spectroscopy, a valuable tool for monitoring plant health,
has been widely used to detect single stress, but its potential for assessing combined stresses remains underexplored.
While several reviews have explored plant molecular and physiological responses to combined stress, none has dis-
cussed the role of spectroscopy in this context. This review addresses this gap by synthesizing existing findings on
plant spectral responses to two common stress combinations: drought + nitrogen deficiency and drought + heat
stress. Although a limited number of studies exist, they reveal that plant spectral responses to combined stresses
are often unique compared with individual stresses. These results point to three potential pathways by which spectros-
copy can enhance plant resilience under combined stress: generating new hypotheses, facilitating the selection of
broad-spectrum stress-tolerant genotypes, and improving stress detection for precision management. This review
also suggests that spectral responses to combined stresses differ from individual stresses across spectral regions,
plant species, scale of spectral sensing, and possibly other factors not yet considered here. To advance reflectance
spectroscopy as a tool for studying combined stress, future research should prioritize enhanced experimental de-
signs, standardized data presentation, integrated modeling, and sensor synergies.

Keywords: Concurrent stress, drought, heat stress, hyperspectral data, nitrogen deficiency, reflectance spectroscopy.

Introduction

Plants experience various stressors both from the physical en-
vironment (abiotic stress) and from biological interactions
with microorganisms and pests (biotic stress). As global climate
change intensifies, the frequency, intensity, and duration of
many environmental stressors, such as heatwaves and rainfall,
have increased, which may further accelerate the spread of pests

and diseases (Chavez-Arias et al., 2021; Chaudhry and Sidhu,
2022). Meanwhile, plants are more likely to encounter mul-
tiple stresses simultaneously or sequentially. While individual
stresses often share overlapping signaling pathways, their com-
bination can lead to unique responses. As a result, combined
stress conditions need to be investigated as distinct scenarios
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rather than being inferred from single-stress studies (Kissoudis
et al., 2014; Pandey et al., 2015; Zandalinas and Mittler, 2022).
Although much research has focused on individual stresses, the
study of combined stress conditions remains largely unexplored
and has become a critical topic in plant stress research.

Stress alters how light interacts with plants by changing their
physiological, biochemical, and structural properties. Stressed
plants exhibit changes in the intensity and direction of the light
they reflect or emit (Jackson, 1986). Reflectance spectroscopy
measures the light reflected from plants in contiguous, narrow
spectral bands using instruments such as spectroradiometers or
hyperspectral imagers (Pefiuelas and Filella, 1998; Berger ef al.,
2020), providing a window into assessing individual and com-
bined stresses in plants. This technique normally divides the
spectrum into three regions: visible (VIS, 400—700 nm), near
infrared (NIR, 700-1300 nm), and shortwave infrared
(SWIR, 1300-2500 nm) (Berger et al., 2020; Skendzic et al.,
2023). The VIS region is dominated by the absorption of foliar
photosynthetic pigments, such as chlorophylls, carotenoids,
and anthocyanins; the NIR region is mainly related to light
scattering within the leaf or canopy; and the SWIR region is
dominated by the absorption of water, lignin, cellulose, and pro-
teins (Berger ef al., 2020). Numerous studies have used reflect-
ance spectroscopy to evaluate individual stresses, such as
drought (Asaari ef al., 2019; Watt et al., 2021; Zhou et al.,
2021; Sapes et al., 2024), nutrient deficiency (Zhu et al., 2022;
Wang et al., 2024), salinity stress (El-Hendawy et al., 2021;
Vennam et al.,, 2024), and other abiotic and biotic stresses
(Sanaeifar et al., 2023; Zhang et al., 2024). These successful appli-
cations imply the great potential of reflectance spectroscopy in
studying the effects of combined stresses. Indeed, this technique
has been reported in several studies of stress combinations, such
as drought and nutrient deficiency (Ilhuoma and Madramootoo,
2020; Wasonga et al., 2021), drought and pathogen infection
(Sapes et al., 2024), as well as drought and heat (Couture et al.,
2015; Bheemanahalli er al., 2022). These studies generally fo-
cused on distinguishing stress and detecting the effect of com-
bined stress using reflectance spectroscopy.

While recent reviews have focused attention on combined
stresses, they predominantly address molecular and physio-
logical aspects (Pandey et al., 2015; Zhang and Sonnewald,
2017; Zandalinas and Mittler, 2022; Nadeem et al., 2023;
Nawaz et al., 2023 ). There is a notable gap in reviews focusing
on how reflectance spectroscopy has been used to understand
plant responses to combined stresses. This review aims to bridge
this gap by synthesizing existing studies conducted under two
common stress combinations—drought + nitrogen deficiency
and drought + heat stress. These combinations were selected since
they are more frequently studied by using reflectance spectroscopy
and are representative of challenges under a changing climate.

The number of studies available on these two stress combi-
nations are limited; thus, rather than providing comprehensive
conclusions, this review serves to: (i) highlight current applica-
tions of reflectance spectroscopy in combined stress research;

(1) demonstrate the potential of the technique for enhancing
plant resilience in changing environments; and (iii) stimulate
further investigation in this emerging field. Accordingly, this
review begins with an overview of plant spectral responses to
individual and combined stresses. It then highlights the poten-
tial of reflectance spectroscopy for deciphering stress combina-
tions and enhancing plant resilience in the challenging climate.
The review concludes with a call for future actions and
improvements.

Review methodology and summary

In this review, we focused on two common stress combina-
tions: drought + nitrogen deficiency and drought + heat stress,
which represent the majority of the published studies involving
reflectance spectroscopy. Other abiotic and biotic stresses were
not included primarily due to the lack of relevant publications.
Although we found a few papers addressing combined drought
+ biotic stress, they were not included because the types of bi-
otic stress (e.g. fungus, pathogen, and pest) varied among these
studies, which further complicates the interpretation of results.

A search for peer-reviewed publications from 1995 to 2025
was conducted using Web of Science, Science Direct, Scopus,
and Google Scholar. For drought + nitrogen deficiency com-
bination, keywords included (spectr* OR reflectance) AND
(‘water stress” OR drought) AND (‘nitrogen stress” OR ‘ni-
trogen defici*). For studies on combined drought and heat
stress, the search keywords were (spectr* OR reflectance)
AND (‘water stress’ OR drought) AND (heat OR ‘tempera-
ture stress’ OR ‘elevated temperature’). Studies addressing
each stress separately without combined treatments were ex-
cluded, as were studies that did not report spectral reflectance
measurements in the VIS-NIR-SWIR region (400-
2500 nm), such as those focusing only on plant growth or using
other sensing technologies such as thermal sensors. This search
resulted in 37 papers, with 28 on drought + nitrogen defi-
ciency and 9 on drought+ heat stress combination
(Supplementary Table S1). A summary of these papers is given
in Supplementary Fig. S1. Maize and wheat are the most fre-
quently studied crops under both stress combinations. Under
drought and nitrogen stress combination, more than half
(56%) of the studies utilized spectral reflectance measurements
from sensors on ground-based platforms (‘canopy_proximal’).
On the other hand, studies on combined drought and heat
stress primarily relied on spectral reflectance at the leaf level.
Canopy reflectance derived from remote sensing platforms
(‘canopy_remote’), such as unmanned aerial vehicles
(UAVs), aircraft, and satellites, has not been reported under
combined drought and heat stress conditions. For drought
and nitrogen stress combination, 20 out of 28 (71%) studies
were conducted in open-field environments, whereas most
studies (78%) under the drought and heat stress combination
were conducted indoors, probably due to the difficulty of con-
trolling temperature in field conditions.
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Quantitative synthesis analysis

We emphasize ‘synthesis analysis’ rather than ‘meta-analysis’
because the latter requires sufficient data to calculate effect
size metrics, such as standardized mean difference (Gurevitch
et al., 2018). These metrics are typically calculated using the
mean and variance of the data. However, most of the papers
identified in this review only provided average spectral reflect-
ance values without including the associated variance or range,
making it impossible to calculate effect size metrics. Therefore,
instead of a formal meta-analysis, we conducted a quantitative
synthesis analysis focused on summarizing the plant spectral re-
flectance responses under combined stress conditions. R eaders
are advised to interpret these synthesis results as descriptive
summaries that suggest the potential for this method to resolve
plant responses to multiple stresses rather than statistically de-
rived conclusions.

We first contacted the corresponding authors of the col-
lected papers to request access to the raw spectral reflectance
data. When no response was received, PlotDigitizer (https://
plotdigitizer.com/) was used to extract data from published fig-
ures, if available. To gather additional data, we searched for
open-source data from the EcoSIS (Ecosystem Spectral
Information System) website (https://ecosis.org/). This syn-
thesis analysis focused solely on continuous spectral reflectance
data and excluded vegetation indices. This was due to the vari-
ation in the type of reported vegetation indices across studies,
making it difficult to compile a consistent set of indices for fur-
ther analysis. For consistency, a fixed step size of 50 nm was
maintained when sampling spectral reflectance data from the
raw data and published figures. When multiple severity levels
or treatment rates for a stress factor were present, the lowest
and highest level/rate were consistently selected. In cases
where reflectance data from multiple dates were available,
the final date was used, ensuring that the stress conditions
had been well established. For studies involving multiple gen-
otypes, species, locations, or years, we treated each unique
combination of these factors as a single sample. Overall, 21
samples were collected for the drought and nitrogen stress
combination, and 18 samples for the drought and heat stress
combination.

To assess plant spectral responses to stress, we calculated the
relative response (RR) for each spectral waveband, referencing
to the control treatment (i.e. the group of plants receiving no
stress treatment). As shown in Equation (1), for a stress factor
(drought, nitrogen stress, heat stress, or combined stress):

O"i,stress - }\'i,control)
)\'i,control

where RR, gress represents the RR at the ith waveband, Aj giress
is the reflectance value at the ith waveband under stress condi-
tions, and A; congrol 18 the reflectance value at the same waveband
under control conditions. A positive RR indicates that stress

RR}L,,strcss = X 100 (%) (l)

increased reflectance at the ith waveband; in contrast, a nega-
tive RR indicates reduced reflectance as compared with con-
trol treatment.

Drought + nitrogen deficiency
Visible spectral region

In general, plants under stressed conditions had VIS reflectance
higher than the controls, especially for nitrogen deficiency and
the combined stress (Fig. 1). Among these samples, the wheat
crops grown in the field had the largest RRs in this region
(Fig. 2A). Eight of these wheat samples obtained from
Raya-Sereno et al. (2024) are depicted in Fig. 2B with their re-
flectance under each treatment. Previous work has shown that
increased VIS reflectance is a common response to drought in
maize (Schepers et al., 1996 ; Schlemmer et al., 2005), wheat
(Bandyopadhyay et al., 2014), and other plant species
(Lassalle, 2021). In this spectral region, reflectance is dominated
by the absorption of various leaf pigments, including Chl a and
b, carotenoids, and anthocyanins (Knipling, 1970 ; Blackburn,
2007; Ollinger, 2011), with higher pigment content leading to
lower reflectance. Among these, chlorophyll is the major light-
harvesting compound in plants and has strong absorption in the
red (~650-700 nm) and blue (~400-500 nm) regions (Curran,
1989; Ollinger, 2011). A reduction in chlorophyll under
drought conditions has been widely reported (Fig. 1), which
may help explain the observed increase in VIS reflectance.
Our review also confirms that nitrogen deficiency leads to in-
creased VIS reflectance, consistent with prior studies (Schepers
et al., 1996 ; Clay et al., 2006; Ranjan et al., 2012; Corti et al.,
2017). For example, Zhao et al. (2003, 2005) reported that ni-
trogen stress increased leaf reflectance at ~550 nm and 710 nm
in corn and sorghum. Similarly, Blackmer ef al. (1996) found
that the spectral responses of corn to different nitrogen treat-
ments were centered around 550 nm and 710 nm. The rise
in VIS reflectance under nitrogen deficiency is primarily attrib-
uted to the stress-induced decrease in chlorophyll synthesis
(Fig. 1). Under combined drought and nitrogen deficiency,
chlorophyll also tends to be reduced, leading to increased
VIS reflectance (Fig. 1). Additionally, the magnitude of the
RR of each species under combined stress was greater than
that under either stress alone (Fig. 2A). This evidence suggests
potential additive or synergistic effects of drought and nitrogen
stress on VIS reflectance.

Near infrared spectral region

The average NIR spectral reflectance was reduced under all
three stress conditions as compared with the control (Fig. 1).
The overall reduced reflectance under water deficit is consist-
ent with findings from field studies in wheat, where spectros-
copy measurements were taken ~1 m above the canopy
(Bandyopadhyay et al., 2014; EI-Hendawy et al.,, 2017). In
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Fig. 1. Average spectral reflectance curves and physiological responses under combined drought and nitrogen (N) deficiency stress. Spectral data were
averaged across seven species—celery, maize, sugar beet, wheat, and three tree species (sycamore, sweetgum, and loblolly pine) (n = 21). Vertical bars
indicate 1 SD. Overlapping circles summarize common trends in physiological traits: a downward arrow indicates a decrease, an upward arrow an increase,
no arrow (with cited studies) indicates no change, and a question mark denotes a lack of available studies. This summary is based on 26 reviewed papers,
most of which examined combined drought and N deficiency stress. The trends shown in the figure reflect the majority consensus among studies. An asterisk
(*) indicates an equal number of studies reporting opposite trends. Circles shaded in different colors represent stress types, i.e. drought stress, nitrogen
stress, and combined stress. Studies cited in those circles are as follows: '(Boussadia et al., 2010), %(Caine et al., 2024), 3(Colovic et al., 2022), 4(Corti et al.,
2017), 3(Ding et al., 2005 ), 8(Dodlig et al., 2019), ’(Elmetwalli and Tyler, 2020), &(EI-Shikha et al., 2007), °(Fahad et al., 2017), '°(lhuoma and Madramootoo,
2020), "'(Kang et al., 2023), "(Klem et al., 2018), '3(Kusnierek and Korsaeth, 2015), '#(Lebourgeois et al., 2012), *®(Li and Wang, 2023), *8(Pancorbo et al.,
2021), V(Saravia et al., 2016), '8(Schepers et al., 1996), '®(Schlemmer et al., 2005), 2°(Shangguan et al., 2000), 2'(Shi et al., 2017), 2%(Situch et al., 2023),
2%(Wang et al., 2011), 24(Wen et al., 2020), 2%(Yang and Qin, 2023), 2%(Zhao et al., 2005).

contrast, a greenhouse study by Schepers et al. (1996) reported
an increase in NIR reflectance under drought. Notably, their
measurements were taken at the leaf level, unlike the canopy-
level measurements in the previous studies—a distinction that
may account for the discrepancy. At the leaf level, drought-
induced changes in plant water status (Fig. 1) can alter the
intercellular air spaces in leaf tissues, causing more microcav-
ities between cell walls. This creates more interfaces, leading
to enhanced NIR reflectance (Knipling, 1970; Schepers
et al., 1996). In contrast, at the canopy level, the NIR spectral
response 1is strongly influenced by the leaf area index
(Jacquemoud et al., 2009). The decline in NIR reflectance ob-
served in our review, as well as in the studies by
Bandyopadhyay et al. (2014) and El-Hendawy et al. (2017), is
likely to be due to reduced leaf area and canopy cover under
drought stress (Fig. 1). Nevertheless, spectral reflectance can
be affected by confounding factors such as weather and soil
conditions. As shown in Fig. 2B, three out of four samples in
2020 demonstrated increased or unchanged reflectance under
drought compared with the control. The combined eftect of
annual weather patterns, preceding crops, and genotypes could
alter the reflectance. To accurately isolate the impact of these
factors, well-controlled and carefully designed experiments
are required in future research.

Similarly, nitrogen deficiency also led to decreased NIR
reflectance, probably due to reduced plant growth and
smaller leaf size under nutrient-limited conditions (Fig. 1).

Additionally, nitrogen deficiency is often associated with accel-
erated leaf senescence (Fig. 1), which can further reduce NIR
reflectance due to degradation of cell walls (Knipling, 1970).
These findings align with previous observations in corn (Clay
et al., 2006; Wang et al., 2011) and wheat (Ranjan et al.,
2012; Devadas et al., 2015). Under combined drought and ni-
trogen stress, the average reduction in NIR reflectance ap-
peared to be the sum of reductions observed under each
individual stress (Fig. 1), suggesting a potential additive effect.

Shortwave infrared spectral region

A clear pattern in the SWIR region could not be established
due to the high variability and limited sample size (i.e. only
four samples across three species). However, previous studies
have reported that SWIR reflectance generally increases under
individual drought (Bandyopadhyay et al., 2014; El-Hendawy
et al., 2017) and nitrogen deficiency conditions (Ranjan et al.,
2012), which is consistent with our findings for the two wheat
samples (Fig. 2A). The other two samples also exhibited a slight
increase in SWIR reflectance under drought stress (Fig. 2A).
This region is known for its water absorption bands at wave-
lengths such as 1200, 1450, 1930, and 2500 nm (Knipling,
1970; Curran, 1989). Drought-induced reductions in plant
water status (Fig. 1) are likely to be a primary factor contribut-
ing to the increased SWIR reflectance. In addition to water ab-
sorption bands, the SWIR region also includes absorption
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Fig. 2. Relative spectral response (Equation 1) for all samples (A) and spectral reflectance of wheat samples (B) from a selected case study (Raya-Sereno
et al. (2024), bottom) under drought + nitrogen deficiency combination. In the top heatmap, the y-axis lists each sample along with details on experimental
setting (indoor versus field), spectral sensing scale (leaf versus canopy), and species. Among the 21 samples: six maize samples were derived from figures
published in '(Li et al., 2025), 2(Ramachandiran and Pazhanivelan, 2015), 3(Schlemmer et al., 2005), and “(Wang et al., 2011); two wheat samples were
derived from figures published in 5(Pancorbo et al., 2021); eight wheat samples were derived from the raw data published in 8(Raya-Sereno et al., 2024); one
celery and one sugar beet sample were derived from figures published in *(Situch et al., 2023); three tree species were derived from figures published in
8(Gong et al., 2012). In the bottom spectral curves, each subplot indicates one wheat genotype (G1, G4) from 1 year of the experiment (2020, 2021) and with
different preceding crops (B for barley and P for pea). The dashed curve shows the mean value of replicates, and the shaded area indicates 1 SD.
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features associated with various chemical compounds, such as
proteins and lignin, which contain nitrogen. Key absorption
bands occur at 1510, 1690, 1940, 2060, 2180, 2300, and
2350 nm (Curran, 1989), reflecting the presence of organic
molecules with C-H, N—H, and O—-H bands. Since nitrogen
deficiency often leads to reduced leaf nitrogen content
(Fig. 1), the increased SWIR reflectance under such conditions
may also result from reduced nitrogen-related absorption.
Under combined drought and nitrogen deficiency, the two
wheat samples in our review showed a greater RR in the
1350-1700 nm range than under either stress alone (Fig. 2A).
This suggests that co-occurring drought and nitrogen stresses
may act additively or synergistically on wheat water and/or ni-
trogen status, leading to a greater reduction in the SWIR spec-
tral reflectance.

Drought + heat
Visible spectral region

‘While both individual and combined drought and nitrogen de-
ficiency led to increased VIS reflectance, this pattern did not
hold for the drought + heat combination. In the latter case,
some samples showed a slight increase in VIS reflectance, but
most exhibited a reduction under individual drought or heat
stress (Fig. 4A). These contrasting patterns may be attributed
to the use of stress-tolerant genotypes in studies involving com-
bined drought and heat stress. Most drought + nitrogen defi-
ciency studies were field based and involved a single
genotype with unreported stress tolerance, whereas the
drought + heat studies were predominantly conducted indoors
and intentionally compared genotypes with varying stress tol-
erance. For example, Couture et al. (2015) used milkweed
seeds from northern and southern populations and observed
distinct trait responses to experimental treatments. The spectral
reflectances of these populations are summarized in Fig. 4B,
where the zoomed-in regions highlight subtle yet noticeable
differences between northern and southern groups. Lobos
et al. (2019) also reported genotypic differences in response
to drought and heat. These inherent variations in stress toler-
ance may help explain the diverse VIS reflectance patterns ob-
served in our synthesis. Additionally, environmental factors
may also contribute to these contrasting patterns. In particular,
when comparing maize samples from greenhouse studies under
drought + nitrogen deficiency versus drought + heat stress, the
day/night temperatures maintained in each greenhouse were
different. These temperature variations could interactively in-
fluence crop spectral responses to drought conditions.

Heat stress is known to impair PSII activity and reduce
photosynthetic pigments (Fig. 3), typically resulting in in-
creased VIS reflectance. However, this pattern may not apply
to heat-tolerant genotypes. As shown in Lobos et al. (2019),
two groups of blueberry cultivars showed contrasting spectral
responses in the VIS region: one exhibited higher reflectance

under heat stress compared with the control, while the other dis-
played slightly lower reflectance (Fig. 4A). In Bheemanahalli
et al. (2022), two maize genotypes exhibited opposite RRs in
the VIS region under heat stress—one positive and the other
negative (Fig. 4A). Similarly, Park ef al. (2021) observed that
heat-resistant ginseng varieties maintained similar VIS reflect-
ance after heat exposure, whereas susceptible varieties displayed
increased reflectance. Zhou et al. (2015) further found that heat
stress increased chlorophyll content in the heat-tolerant tomato
groups but reduced it in the heat-sensitive groups. One pro-
posed mechanism for heat tolerance is the accumulation of an-
thocyanins (Fig. 3), which are water-soluble vacuolar
pigments that strongly absorb light at ~550+15 nm (Gitelson
et al., 2001). In our synthesis, blueberry plants showed a slight
positive response near 550 nm, whereas milkweed exhibited a
significantly negative response, potentially reflecting differences
in anthocyanin content and heat tolerance (Fig. 4A).

Opverall, our synthesis suggests that genotypic variation in
stress tolerance can be detected through spectral reflectance.
Under combined drought and heat stress, plant responses be-
came more complex. Carob trees and maize showed positive
RRs, while blueberry and milkweed exhibited negative re-
sponses (Fig. 4A). Notably, maize and carob trees displayed op-
posite response directions under combined stress compared
with individual drought or heat. This suggests that these species
may have unique responsive mechanisms under combined
stress that are not simply additive from the responses to each
stress alone.

Near infrared spectral region

Although less pronounced than the pattern observed under the
drought + nitrogen deficiency combination, the NIR spectral
reflectance was generally reduced under stress conditions
(Fig. 3). Moreover, varying levels of stress tolerance can lead
to differences in spectral responses. For example, a maize sam-
ple in Bheemanahalli ef al. (2022) showed a significant negative
response under drought (Fig. 4A). This particular sample be-
longed to a genotype that appeared more drought tolerant
than the other genotype studied in the same research.
Although the exact mechanisms responsible for the reduction
in NIR reflectance remain unclear, the spectral evidence sug-
gests possible drought tolerance mechanisms related to leaf
structure. In our synthesis, heat stress slightly increased NIR re-
flectance in blueberry, potentially due to dehydration-induced
microcavities forming between cell walls (Knipling, 1970). In
contrast, the other three species showed decreased NIR re-
flectance, possibly resulting from cell wall degradation as leaves
aged—a response consistent with the acceleration of leaf senes-
cence under heat stress (Fig. 3). Although NIR reflectance
under heat stress varies across species, these differences high-
light the potential of spectroscopy as a tool for evaluating stress
resistance. When drought and heat were combined, the aver-
age NIR reflectance was nearly identical to that under control
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Fig. 3. Average spectral reflectance curves and physiological responses under combined drought and heat stress. Spectral data were averaged across four
plant species—blueberry, carob tree, maize, and milkweed (n=18). Vertical bars indicate 1 SD. Overlapping circles summarize common trends in physiological
traits: a downward arrow indicates a decrease, an upward arrow an increase, no arrow (with cited studies) indicates no change, and a question mark denotes
alack of available studies. This summary is based on 28 reviewed papers, most of which examined combined drought and heat stress. The trends present in
the figure reflect the majority consensus among studies. An asterisk (*) indicates an equal number of studies reporting opposite trends. Circles shaded in
different colors represent stress types, i.e. drought stress, heat stress, and combined stress. Studies cited in those circles are: "(Abdelhakim et al., 2021),
2(Akter and Islam, 2017), %(Bheemanahalli et al., 2022), 4(Caine et al., 2024), °(Colovic et al., 2022), 8(Corti et al., 2017), " (Couture et al., 2015), &Dodig et al.,
2019), °(Elmetwalli and Tyler, 2020), '°(Fahad et al., 2017), ' '(Hassan et al., 2021), '%(Ihuoma and Madramootoo, 2020), *¥(Kang et al., 2023), "(Klem et al.,
2018), "®(Kusnierek and Korsaeth, 2015), '8(Li and Wang, 2023), 7 (Osorio et al., 2012), '®(Pancorbo et al., 2021 ), '°(Rezaei et al., 2015), 2°(Saravia et al.,
2016), 2'(Schepers et al., 1996), 22(Schlemmer et al., 2005), 25(Shi et al., 2017), 24(Situch et al., 2023), 2°(Wang et al., 2011), 26(Yang and Qin, 2023), 2’(Zhou

et al., 2015), 28(Zhou et al., 2017).

conditions (Fig. 3), suggesting a non-additive eftect of the two
stresses on the NIR region. For example, in maize, both
drought and heat stress individually led to negative RRs in
the NIR region (Fig. 4A). If their effects were additive, a
more pronounced negative response would be expected under
combined stress. However, the observed response was close to
zero (Fig. 4A), supporting the idea of a non-additive inter-
action between drought and heat in influencing NIR
reflectance.

Shortwave infrared spectral region

Although only two plant species—blueberry and milkweed—
had available SWIR region measurements for analysis, distinct
spectral patterns were observed across the three stress condi-
tions (Fig. 4A). In the blueberry samples, SWIR reflectance
under drought remained similar to the control, but it increased
under both heat stress and the combined drought + heat stress.
Notably, one blueberry sample exhibited a reflectance ‘hot-
spot’ near 1900-1950 nm under heat and combined stress
(Fig. 4A)—an area primarily associated with water absorption
(Fig. 3). This probably indicates dehydration in these blueberry
samples under those stress conditions. In contrast, milkweed
displayed the opposite trend. The samples showed positive
RRs in the SWIR region under drought but exhibited min-
imal changes under heat or combined stress. When examining
individual milkweed populations, increased SWIR reflectance

under drought was mainly observed in southern populations,
suggesting greater drought sensitivity (Fig. 4B). This aligns
well with findings from Couture et al. (2015), which indicate
that northern populations may perform better under future cli-
mate conditions with more drought events. Interestingly, at
~1950 nm, milkweed reflectance tended to remain unchanged
or slightly decrease, in contrast to the positive responses ob-
served in blueberry under heat and combined stress
(Fig. 4A). These contrasting patterns suggest that blueberry
and milkweed employ different physiological mechanisms in
response to stress. They highlight the potential of spectral
data to generate and support hypotheses about plant stress
responses.

Standardized protocols for reporting data

Although not evident in the synthesis analysis, variations in ex-
perimental regimes may introduce differences in the intensity
and duration of the stress, which may further affect spectral re-
sponses. For example, nitrogen fertilization has been shown to
enhance plant growth under short-term drought but may ex-
acerbate stress effects under prolonged drought conditions
(Araus et al., 2020). To minimize such variability, we collected
spectral data from the lowest and highest treatment levels at the
latest sampling date or growth stage reported in each study.
Nevertheless, this approach cannot entirely eliminate potential
sources of error. Identical treatment levels may not induce the
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same degree of physiological stress across different studies due
to varying experimental conditions. Environmental factors
such as local climate and soil conditions may also confound
spectral responses (Kissoudis et al., 2014; Akter and Islam,
2017). For example, if a drought treatment is applied under
lower ambient temperatures in one study compared with an-
other, differences in spectral reflectance may result from tem-
perature effects rather than drought alone.

These uncertainty factors underscore the need for improved
protocols in experimental design and standardized data presenta-
tion in scientific publications. Publications should include de-
tailed ancillary data along with spectral measurements, such as
plant growth stages, ambient weather conditions, sensor specifi-
cations, and the scale of sensing (leaf or canopy). Furthermore,
the reporting of spectral data must be standardized. Our review
showed that <50% of the identified studies provided average
spectral curves or raw spectral data for each treatment condition.
Some studies only reported a few vegetation indices, despite
having continuous spectral measurements, while others focused
primarily on estimating plant traits under stress conditions with-
out discussing spectral behaviors or disclosing the spectral data.
To advance this field, we encourage researchers to share raw
spectral data through open repositories such as EcoSIS. If neces-
sary, a new data platform can be developed specifically to host
plant spectral data under individual and combined stresses.

The role of spectroscopy in enhancing plant
resilience to complex stress conditions

While the spectral responses observed are often case and species
specific, this review nonetheless provides valuable insights into
how plant stress responses may be reflected in different spectral
regions. Most importantly, our synthesis underscores the po-
tential of spectroscopy as a tool for studying plant stress resili-
ence, as discussed in the following sections.

Driving hypothesis

In this era of rapid global climate change, developing broad-
spectrum stress-tolerant plant varieties is vital for sustainable
development. Advancements in transcriptomic, proteomic,
and metabolic technologies have improved the understanding
of the mechanisms underlying plant responses to combined
stresses (Atkinson and Urwin, 2012; Pandey et al., 2017,
Zhang and Sonnewald, 2017; Nawaz ef al., 2023). These ad-
vancements have also facilitated the identification of breeding
targets for developing broad-spectrum stress tolerance.
Despite the growing understanding of the unique and shared
plant responses to individual and combined stresses, many re-
main unknown due to the complexity of combined stresses.
Although spectroscopy alone cannot directly uncover these
mechanisms—since it captures the integrative impacts of
stress—it can be useful in hypothesis generation and validation.
For example, leaf chlorophyll content, which is closely linked

to photosynthesis, is strongly associated with the VIS spectral
region at ~430, 460, 640, and 660 nm (Curran, 1989).
Observing plant VIS spectral features under individual and
combined stresses allows us to formulate hypotheses about
photosynthetic responses to difterent stress conditions. As ob-
served in the synthesis analysis, wheat subjected to combined
drought and nitrogen deficiency exhibited a greater magnitude
of RR in the SWIR region than those experiencing either
stress alone (Fig. 2). Given the strong association between
the SWIR region and water absorption, this observation sug-
gests a hypothesis that combined drought and nitrogen defi-
ciency may synergistically impact wheat leaf’ water content.
Additionally, the speed and efficiency of spectroscopy allow
for the tracking of diurnal and seasonal dynamics in plant spec-
tral responses. This capability is particularly valuable because
the effects of combined stress on plants vary across different
growth stages (Pandey et al., 2015). Continuous monitoring
of spectral reflectance under combined stress conditions allows
us to hypothesize about stage-specific stress effects and identify
the most vulnerable growth stages for each plant species.

Genotype selection

When selecting genotypes for broad-spectrum stress tolerance, it
is not enough to simply identify those that can tolerate or survive
stress conditions—it is also important to select genotypes that
can maintain high yields (Atkinson and Urwin, 2012). Yield
and its component traits are integrative in nature since they in-
tegrate plant performance over time (Araus et al., 2023).
Conventional methods to measure these traits are often destruc-
tive and time-consuming. Spectroscopy offers a valuable,
non-destructive alternative for estimating yield and yield com-
ponents, helping to accelerate the selection of elite genotypes
with broad-spectrum stress tolerance and high yield potential.
Another direction is to use spectroscopy directly by treating
plant spectral signatures as a unique trait or breeding target.
Since spectroscopy provides an integrative measurement of plant
performance under stress, using the full spectrum may be more
effective than estimating plant traits for selecting elite genotypes
(Kothari and Schweiger, 2022). In ecology, the concept of ‘op-
tical types” has been proposed to optically distinguish functional
plant types based on their spectral properties (Ustin and Gamon,
2010). This concept could be adapted for selecting genotypes
with broad-spectrum stress tolerance. Positioning genotypes
with different stress tolerances in the multidimensional spectral
space may open up a new perspective on genotype selection.
Advanced knowledge on how plant spectral signatures relate
to stress tolerance is critical for this pursuit.

Stress detection

Increasing plant resistance to combined stress conditions can be
achieved through breeding and engineering resilient plants, as
well as through adaptive management practices. From the
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management perspective, the ability to distinguish between
combined and individual stress events is crucial for precision
management. For example, accurately differentiating between
water stress, nutrient deficiency, and their combined eftects
could optimize fertigation systems that apply water and nutrient
together. Several studies have explored the use of spectroscopy
technology to distinguish between drought, nitrogen defi-
ciency, and their combination. Karimi ef al. (2005) identified a
set of narrow spectral wavebands for the discrimination of nitro-
gen and water stress in corn. Kusnierek and Korsaeth (2015)
used principal component analysis (PCA) to separate nitrogen
and water treatments in spring wheat, with results showing
that the first PCA component was more related to water treat-
ment, while the second component correlated more with nitro-
gen fertilizer. Similarly, Elmetwalli and Tyler (2020) used
penalized linear discriminant analysis to distinguish water and ni-
trogen deficiency stress from hyperspectral data (3501050 nm),
achieving promising results, with a misclassification rate of 0.24.
Additionally, Situch et al. (2023) reported high accuracy using a
random forest model to distinguish between different nitrogen
supply levels under varying water availability in sugar beet
(85% overall accuracy) and in celery (78% overall accuracy).

Other studies have focused on developing unique vegetation
indices that can isolate individual drought or nitrogen deficiency
stress. For example, in El-Shikha ef al. (2007) and Pancorbo et al.
(2021), the canopy chlorophyll content index (CCCI) was found
to be highly sensitive to nitrogen stress but insensitive to water
stress. On the other hand, the water deficit index (WDI) has
shown potential in detecting crop water stress by effectively difter-
entiating between varying levels of water treatments. Masseroni
et al. (2017) found that the crop water stress index (CWSI) could
detect plant water status without dependence on plant nitrogen
conditions. Thuoma and Madramootoo (2020) identified several
indices—PRI550 (photochemical reflectance index centered at
550 nm), PRInorm (normalized PRI), and W1 (water index)—
as being the most sensitive to water stress. Conversely, the
RDVI (renormalized difference vegetation index), PRInorm,
and TCARLI (transformed chlorophyll absorption in reflectance
index) correlated well with nitrogen stress indicators. Recently,
Li et al. (2025) optimized a new nitrogen stress indicator, the ratio
between the normalized red edge index (NDRE) and the nor-
malized difference vegetation index (NDVI). This new indicator
successfully minimized the confounding influence of soil water
variability. Altogether, these findings demonstrated the potential
of spectroscopy for distinguishing between individual and com-
bined drought and nitrogen deficiency. Future studies should in-
vestigate how spectroscopy can be applied to detect or distinguish
other common stress combinations, such as drought and heat
stress, and drought and biotic stress.

Calls to action

Although there has been increasing attention on studying plant
molecular and physiological responses to combined stress

conditions, this review highlights a lack of research on how re-
flectance spectroscopy can be used to understand these re-
sponses, as evident by the limited number of identified
papers. This is the primary limitation of our review and con-
strains the generalizability of the observed spectral patterns.
Findings presented in this study should be interpreted with
caution, as the spectral responses reported here may not univer-
sally apply across difterent plant species, genotypes, or environ-
mental settings. Additionally, this review focused on two stress
combinations occurring simultaneously, as these are the most
studied in publications. However, in natural conditions, plants
can experience three or more abiotic and/or biotic stressors
simultaneously or sequentially—what Zandalinas et al. (2021)
referred to as ‘multifactorial stress combination’. Further, se-
quential stresses often cause priming effects that prepare plants
to perform better under future stress (Zhang and Sonnewald,
2017; Fu et al., 2022), leading to more complex and dynamic
variations in plant spectral responses. Given these gaps in the
literature, we call for more research into multiple stress combi-
nations, both simultaneous and sequential, with a particular fo-
cus on the role of reflectance spectroscopy.

Experimental setting

Investigating combined stress conditions in natural settings or
at least in conditions that closely mimic the natural environ-
ment is crucial yet challenging. As shown in this review,
most studies on combined drought and heat stress were con-
ducted indoors, possibly due to the difficulty of regulating
the temperature in open-field conditions. Controlled environ-
ments are advantageous for studying plant responses to particu-
lar stresses because they offer better control of stress intensity,
timing, and duration, as well as other environmental factors.
However, these settings often limit plants to certain growth
conditions, such as confining plants to a limited soil volume
(Araus et al., 2023), which can confound the effects of com-
bined stresses. If experiments must be conducted in controlled
environments, they should be carefully designed to closely rep-
licate field conditions, particularly in terms of growth media,
stress duration and severity, timing of stress, and nutrient avail-
ability (Atkinson and Urwin, 2012). Alternatively, free-air car-
bon dioxide enrichment (FACE) facilities offer a promising
solution for in-field control of certain stress factors. For ex-
ample, the SoyFACE facility at the University of Illinois at
Urbana—Champaign (IL, USA) allows altering of climate con-
ditions including atmospheric CO, and O; levels, air tempera-
ture, and soil water availability (Ainsworth et al,, 2004;
Bernacchi ef al., 2006). This facility has been well documented
in the literature for investigating interactions between rising at-
mospheric CO; and Oj levels (Eastburn et al., 2010), rising
CO; and warming temperature (Bagley et al., 2015), as well
as elevated CO, and intensified drought (Gray et al., 2016).
Future studies are encouraged to use these FACE facilities to
explore more stress combinations. With the open-field
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settings, spectroscopy sensors mounted on remote sensing plat-
forms, such as satellites, UAVs, and cable-suspended systems,
can be used to collect spectral data more quickly and efficiently.

Integrated modeling

Implementing various stress combinations in controlled or field
experiments can be impractical. An alternative approach is to
use process-based models, which are mathematical representa-
tions of the physical world and grounded in decades of obser-
vations and experiments (Read ef al., 2019). For example, crop
growth models (CGMs) simulate crop growth and develop-
ment under pre-defined weather, soil, and management condi-
tions (Hoogenboom et al., 2004). By adjusting input
parameters, CGMs can simulate plant phenology and growth
patterns under difterent stresses such as drought and tempera-
ture stress (Rezaei et al., 2015; Araus et al., 2023; Leisner
et al., 2023). However, due to constraints in parameter settings
and the complexity of crop—environment interactions, CGMs
have limited capability to simulate the impacts of many stress
conditions such as biotic stress factors. To better simulate
crop growth under diverse stressors, a promising strategy is to
couple CGM with other holistic models, such as climate mod-
els (Rotter ef al., 2011) and pest and disease models (Donatelli
et al., 2017). Skelsey et al. (2016) proved this strategy by coup-
ling a CGM with an aerobiological model and an infection risk
model to assess the impact of future climate conditions on po-
tato late blight risks.

From a spectroscopy perspective, radiative transter models
(RTMs), which simulate light interactions with plants
(Jacquemoud et al., 2009), can be integrated with CGMs using
their shared variables. This integration efficiently connects the
plant spectral signature with its dynamic growth, as well as the
environmental conditions. A successful example is demonstrated
by Chen et al. (2022), where a CGM was integrated with an
RTM for the estimation of crop traits. Another benefit of inte-
grating RTMs, especially leaf-level models such as PROSPECT
(Jacquemoud and Baret, 1990), is their ability to simulate not
only reflectance, but also transmittance and absorptance.
‘While this review has focused primarily on reflectance spectros-
copy, other optical properties such as transmittance and absorp-
tion can offer complementary insights into plant responses to
environmental stress. For example, Chen ef al. (2023) proposed
transmittance-based vegetation indices that were less influenced
by confounding leaf traits compared with traditional reflectance-
based indices when estimating carotenoids, leaf water content,
and leaf mass per area. Although measuring transmittance and
absorptance typically requires more complex instruments (e.g.
spectrophotometers with integrating spheres), RTMs provide
a promising alternative for simulating and exploring these prop-
erties. Future studies should consider incorporating transmit-
tance and absorptance data to better isolate the physiological
mechanisms underlying spectral responses to combined stress
conditions.

‘While process-based models offer a robust framework for
understanding underlying mechanisms, they often require
complex and time-consuming calibration processes (Chang
et al., 2023). In contrast, statistical and empirical data-driven
models, such as machine learning and deep learning, have be-
come increasingly popular due to their efficiency and accuracy.
These empirical models excel at learning from observational
data to identify driving factors affecting crop growth that might
not be captured by process-based models (Rezaei et al., 2022).
Integrating process-based models with these empirical models
can enhance their complementary strengths by combining
mechanistic insights with the capacity to uncover new patterns
from data (Li et al., 2023, 2024). Collectively, such an inte-
grated approach may open up the way for an improved mech-
anistic understanding of multistress interactions, as well as
enhanced modeling efficiency. Yet, achieving this comprehen-
sive integration, from stress-driving factors to plant responses
and from process-based to data-driven models, will require in-
tensive collaboration among modelers, engineers, climatolo-
gists, agronomists, and plant pathologists in future research.

Sensor synergy

A significant limitation of reflectance spectroscopy is that spec-
tral changes often reflect alterations in plant physiological states
that are collectively influenced by multiple stress factors. In nat-
ural conditions, where the specific type of stress may not be
known in advance or multiple stresses occur simultaneously,
spectroscopy alone cannot provide sufficient information to
identify or disentangle the stresses (Jackson, 1986). To address
this limitation, a multisensor synergy might ofter a more eftect-
ive solution for deciphering complex responses under com-
bined stress conditions. Although this review focuses on
reflectance spectroscopy, we acknowledge the value of other
sensing technologies, including thermal imaging, chlorophyll
fluorescence, and light detection and ranging (LiDAR), which
can complement spectral data to provide a more holistic view
of plant stress responses.

Thermal sensing measures canopy temperature. Based on
the leaf energy balance equation, leaf or canopy temperature
is related to the plant transpiration rate and thus is a function
of stomatal conductance (Gerhards et al., 2019). This sensing
technique has been found in assessing plant water stress
(Gerhards et al., 2019). Chl a fluorescence, which is closely re-
lated to photosynthetic function, is another powerful tool for
stress detection (Stirbet ef al., 2018). It has proven useful for
evaluating tomato growth performance under combined water
deficit and salinity stress (Kautz et al., 2014) and under com-
bined waterlogging and salinity stress (Zhou et al., 2022).
LiDAR, by emitting laser pulses that can partially penetrate
crop canopies through foliage gaps, provides valuable plant
structural information beneath the canopy. This makes it espe-
cially valuable for detecting structural changes linked to stress
such as drought (Su et al., 2019; Mulugeta Aneley et al., 2023)
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and salinity (Zhang et al., 2023). Given their complementary
benefits, integrating different sensors holds promise for provid-
ing a more detailed and accurate assessment of plant responses
to complex stress conditions.

There are two common approaches to combine different
sensors: data-level and feature-level fusion. At the data level,
raw data from multiple sensors is directly combined before fur-
ther analysis. For example, Gu et al. (2024) combined
UAV-derived LiDAR point clouds and multispectral images
to form a 3D multispectral point cloud, from which the photo-
synthetic traits of wheat were derived for stress monitoring. At
the feature level, key variables such as vegetation indices are
first derived from individual sensors and then integrated for fur-
ther analysis. For example, Pancorbo et al. (2021) suggested that
simultaneously measuring VNIR reflectance and thermal in-
formation can improve water and nitrogen management strat-
egies. Their approach used CCCI derived from VNIR
reflectance to distinguish nitrogen treatment levels while min-
imizing the confounding effects of soil water status.
Conversely, WDI calculated using both VNIR and thermal
data showed stronger sensitivity to water status than nitrogen
status. Caine ef al. (2024) enhanced abiotic stress monitoring
by integrating thermal sensing with reflectance-based indices
to improve transpiration modeling and water flux estimation.
Finally, incorporating other data sources, such as soil proper-
ties, weather variables, and management history, could further
enhance our ability to identify the driving factors of plant stress.

Conclusion

This review presents a new perspective on studying plant re-
sponses to combined stresses through reflectance spectroscopy.
The synthesis results showed that plants had different spectral
responses to individual and combined stresses, indicating the
potential to distinguish between these stresses. It is also ob-
served that plant spectral responses to combined stress differ
from those to individual stresses, and these differences were af-
fected by plant species, genotypes, spectral sensing scales, and
potentially other experimental factors. These findings highlight
the potential of reflectance spectroscopy as a tool to help im-
prove plant resilience in a changing climate by driving new hy-
potheses, facilitating breeding programs, and refining precision
stress management practices. Nevertheless, the limited number
of studies in this area underscores the need for continued
research. Future advancements will require comprehensive
approaches, including improved experimental designs, standar-
dized data presentation protocols, advanced modeling meth-
ods, and integrated sensing strategies, to fully unlock the
potential of reflectance spectroscopy in deciphering plant re-
sponses to combined stresses.

Supplementary data
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ficiency and drought + heat stress combinations.
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