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Abstract

Plants in natural environments often face unpredictable, co-occurring stresses, such as heatwaves and droughts, a 
trend that is intensifying with climate change. Reflectance spectroscopy, a valuable tool for monitoring plant health, 
has been widely used to detect single stress, but its potential for assessing combined stresses remains underexplored. 
While several reviews have explored plant molecular and physiological responses to combined stress, none has dis
cussed the role of spectroscopy in this context. This review addresses this gap by synthesizing existing findings on 
plant spectral responses to two common stress combinations: drought + nitrogen deficiency and drought + heat 
stress. Although a limited number of studies exist, they reveal that plant spectral responses to combined stresses 
are often unique compared with individual stresses. These results point to three potential pathways by which spectros
copy can enhance plant resilience under combined stress: generating new hypotheses, facilitating the selection of 
broad-spectrum stress-tolerant genotypes, and improving stress detection for precision management. This review 
also suggests that spectral responses to combined stresses differ from individual stresses across spectral regions, 
plant species, scale of spectral sensing, and possibly other factors not yet considered here. To advance reflectance 
spectroscopy as a tool for studying combined stress, future research should prioritize enhanced experimental de
signs, standardized data presentation, integrated modeling, and sensor synergies.
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Introduction

Plants experience various stressors both from the physical en
vironment (abiotic stress) and from biological interactions 
with microorganisms and pests (biotic stress). As global climate 
change intensifies, the frequency, intensity, and duration of 
many environmental stressors, such as heatwaves and rainfall, 
have increased, which may further accelerate the spread of pests 

and diseases (Chávez-Arias et al., 2021; Chaudhry and Sidhu, 
2022). Meanwhile, plants are more likely to encounter mul
tiple stresses simultaneously or sequentially. While individual 
stresses often share overlapping signaling pathways, their com
bination can lead to unique responses. As a result, combined 
stress conditions need to be investigated as distinct scenarios 
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rather than being inferred from single-stress studies (Kissoudis 
et al., 2014; Pandey et al., 2015; Zandalinas and Mittler, 2022). 
Although much research has focused on individual stresses, the 
study of combined stress conditions remains largely unexplored 
and has become a critical topic in plant stress research.

Stress alters how light interacts with plants by changing their 
physiological, biochemical, and structural properties. Stressed 
plants exhibit changes in the intensity and direction of the light 
they reflect or emit (Jackson, 1986). Reflectance spectroscopy 
measures the light reflected from plants in contiguous, narrow 
spectral bands using instruments such as spectroradiometers or 
hyperspectral imagers (Peñuelas and Filella, 1998; Berger et al., 
2020), providing a window into assessing individual and com
bined stresses in plants. This technique normally divides the 
spectrum into three regions: visible (VIS, 400–700 nm), near 
infrared (NIR, 700–1300 nm), and shortwave infrared 
(SWIR, 1300–2500 nm) (Berger et al., 2020; Skendžić et al., 
2023). The VIS region is dominated by the absorption of foliar 
photosynthetic pigments, such as chlorophylls, carotenoids, 
and anthocyanins; the NIR region is mainly related to light 
scattering within the leaf or canopy; and the SWIR region is 
dominated by the absorption of water, lignin, cellulose, and pro
teins (Berger et al., 2020). Numerous studies have used reflect
ance spectroscopy to evaluate individual stresses, such as 
drought (Asaari et al., 2019; Watt et al., 2021; Zhou et al., 
2021; Sapes et al., 2024), nutrient deficiency (Zhu et al., 2022; 
Wang et al., 2024), salinity stress (El-Hendawy et al., 2021; 
Vennam et al., 2024), and other abiotic and biotic stresses 
(Sanaeifar et al., 2023; Zhang et al., 2024). These successful appli
cations imply the great potential of reflectance spectroscopy in 
studying the effects of combined stresses. Indeed, this technique 
has been reported in several studies of stress combinations, such 
as drought and nutrient deficiency (Ihuoma and Madramootoo, 
2020; Wasonga et al., 2021), drought and pathogen infection 
(Sapes et al., 2024), as well as drought and heat (Couture et al., 
2015; Bheemanahalli et al., 2022). These studies generally fo
cused on distinguishing stress and detecting the effect of com
bined stress using reflectance spectroscopy.

While recent reviews have focused attention on combined 
stresses, they predominantly address molecular and physio
logical aspects (Pandey et al., 2015; Zhang and Sonnewald, 
2017; Zandalinas and Mittler, 2022; Nadeem et al., 2023; 
Nawaz et al., 2023 ). There is a notable gap in reviews focusing 
on how reflectance spectroscopy has been used to understand 
plant responses to combined stresses. This review aims to bridge 
this gap by synthesizing existing studies conducted under two 
common stress combinations—drought + nitrogen deficiency 
and drought + heat stress. These combinations were selected since 
they are more frequently studied by using reflectance spectroscopy 
and are representative of challenges under a changing climate.

The number of studies available on these two stress combi
nations are limited; thus, rather than providing comprehensive 
conclusions, this review serves to: (i) highlight current applica
tions of reflectance spectroscopy in combined stress research; 

(ii) demonstrate the potential of the technique for enhancing 
plant resilience in changing environments; and (iii) stimulate 
further investigation in this emerging field. Accordingly, this 
review begins with an overview of plant spectral responses to 
individual and combined stresses. It then highlights the poten
tial of reflectance spectroscopy for deciphering stress combina
tions and enhancing plant resilience in the challenging climate. 
The review concludes with a call for future actions and 
improvements.

Review methodology and summary

In this review, we focused on two common stress combina
tions: drought + nitrogen deficiency and drought + heat stress, 
which represent the majority of the published studies involving 
reflectance spectroscopy. Other abiotic and biotic stresses were 
not included primarily due to the lack of relevant publications. 
Although we found a few papers addressing combined drought  
+ biotic stress, they were not included because the types of bi
otic stress (e.g. fungus, pathogen, and pest) varied among these 
studies, which further complicates the interpretation of results.

A search for peer-reviewed publications from 1995 to 2025 
was conducted using Web of Science, Science Direct, Scopus, 
and Google Scholar. For drought + nitrogen deficiency com
bination, keywords included (spectr* OR reflectance) AND 
(‘water stress’ OR drought) AND (‘nitrogen stress’ OR ‘ni
trogen defici*). For studies on combined drought and heat 
stress, the search keywords were (spectr* OR reflectance) 
AND (‘water stress’ OR drought) AND (heat OR ‘tempera
ture stress’ OR ‘elevated temperature’). Studies addressing 
each stress separately without combined treatments were ex
cluded, as were studies that did not report spectral reflectance 
measurements in the VIS–NIR–SWIR region (400– 
2500 nm), such as those focusing only on plant growth or using 
other sensing technologies such as thermal sensors. This search 
resulted in 37 papers, with 28 on drought + nitrogen defi
ciency and 9 on drought + heat stress combination 
(Supplementary Table S1). A summary of these papers is given 
in Supplementary Fig. S1. Maize and wheat are the most fre
quently studied crops under both stress combinations. Under 
drought and nitrogen stress combination, more than half 
(56%) of the studies utilized spectral reflectance measurements 
from sensors on ground-based platforms (‘canopy_proximal’). 
On the other hand, studies on combined drought and heat 
stress primarily relied on spectral reflectance at the leaf level. 
Canopy reflectance derived from remote sensing platforms 
(‘canopy_remote’), such as unmanned aerial vehicles 
(UAVs), aircraft, and satellites, has not been reported under 
combined drought and heat stress conditions. For drought 
and nitrogen stress combination, 20 out of 28 (71%) studies 
were conducted in open-field environments, whereas most 
studies (78%) under the drought and heat stress combination 
were conducted indoors, probably due to the difficulty of con
trolling temperature in field conditions.
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Quantitative synthesis analysis

We emphasize ‘synthesis analysis’ rather than ‘meta-analysis’ 
because the latter requires sufficient data to calculate effect 
size metrics, such as standardized mean difference (Gurevitch 
et al., 2018). These metrics are typically calculated using the 
mean and variance of the data. However, most of the papers 
identified in this review only provided average spectral reflect
ance values without including the associated variance or range, 
making it impossible to calculate effect size metrics. Therefore, 
instead of a formal meta-analysis, we conducted a quantitative 
synthesis analysis focused on summarizing the plant spectral re
flectance responses under combined stress conditions. Readers 
are advised to interpret these synthesis results as descriptive 
summaries that suggest the potential for this method to resolve 
plant responses to multiple stresses rather than statistically de
rived conclusions.

We first contacted the corresponding authors of the col
lected papers to request access to the raw spectral reflectance 
data. When no response was received, PlotDigitizer (https:// 
plotdigitizer.com/) was used to extract data from published fig
ures, if available. To gather additional data, we searched for 
open-source data from the EcoSIS (Ecosystem Spectral 
Information System) website (https://ecosis.org/). This syn
thesis analysis focused solely on continuous spectral reflectance 
data and excluded vegetation indices. This was due to the vari
ation in the type of reported vegetation indices across studies, 
making it difficult to compile a consistent set of indices for fur
ther analysis. For consistency, a fixed step size of 50 nm was 
maintained when sampling spectral reflectance data from the 
raw data and published figures. When multiple severity levels 
or treatment rates for a stress factor were present, the lowest 
and highest level/rate were consistently selected. In cases 
where reflectance data from multiple dates were available, 
the final date was used, ensuring that the stress conditions 
had been well established. For studies involving multiple gen
otypes, species, locations, or years, we treated each unique 
combination of these factors as a single sample. Overall, 21 
samples were collected for the drought and nitrogen stress 
combination, and 18 samples for the drought and heat stress 
combination.

To assess plant spectral responses to stress, we calculated the 
relative response (RR) for each spectral waveband, referencing 
to the control treatment (i.e. the group of plants receiving no 
stress treatment). As shown in Equation (1), for a stress factor 
(drought, nitrogen stress, heat stress, or combined stress):

RRλi ,stress =
(λi,stress − λi,control)

λi,control
× 100 (%) (1) 

where RRλi ,stress represents the RR at the ith waveband, λi,stress 

is the reflectance value at the ith waveband under stress condi
tions, and λi,control is the reflectance value at the same waveband 
under control conditions. A positive RR indicates that stress 

increased reflectance at the ith waveband; in contrast, a nega
tive RR indicates reduced reflectance as compared with con
trol treatment.

Drought + nitrogen deficiency

Visible spectral region

In general, plants under stressed conditions had VIS reflectance 
higher than the controls, especially for nitrogen deficiency and 
the combined stress (Fig. 1). Among these samples, the wheat 
crops grown in the field had the largest RRs in this region 
(Fig. 2A). Eight of these wheat samples obtained from 
Raya-Sereno et al. (2024) are depicted in Fig. 2B with their re
flectance under each treatment. Previous work has shown that 
increased VIS reflectance is a common response to drought in 
maize (Schepers et al., 1996 ; Schlemmer et al., 2005), wheat 
(Bandyopadhyay et al., 2014), and other plant species 
(Lassalle, 2021). In this spectral region, reflectance is dominated 
by the absorption of various leaf pigments, including Chl a and 
b, carotenoids, and anthocyanins (Knipling, 1970 ; Blackburn, 
2007; Ollinger, 2011), with higher pigment content leading to 
lower reflectance. Among these, chlorophyll is the major light- 
harvesting compound in plants and has strong absorption in the 
red (∼650–700 nm) and blue (∼400–500 nm) regions (Curran, 
1989; Ollinger, 2011). A reduction in chlorophyll under 
drought conditions has been widely reported (Fig. 1), which 
may help explain the observed increase in VIS reflectance. 
Our review also confirms that nitrogen deficiency leads to in
creased VIS reflectance, consistent with prior studies (Schepers 
et al., 1996 ; Clay et al., 2006; Ranjan et al., 2012; Corti et al., 
2017). For example, Zhao et al. (2003, 2005) reported that ni
trogen stress increased leaf reflectance at ∼550 nm and 710 nm 
in corn and sorghum. Similarly, Blackmer et al. (1996) found 
that the spectral responses of corn to different nitrogen treat
ments were centered around 550 nm and 710 nm. The rise 
in VIS reflectance under nitrogen deficiency is primarily attrib
uted to the stress-induced decrease in chlorophyll synthesis 
(Fig. 1). Under combined drought and nitrogen deficiency, 
chlorophyll also tends to be reduced, leading to increased 
VIS reflectance (Fig. 1). Additionally, the magnitude of the 
RR of each species under combined stress was greater than 
that under either stress alone (Fig. 2A). This evidence suggests 
potential additive or synergistic effects of drought and nitrogen 
stress on VIS reflectance.

Near infrared spectral region

The average NIR spectral reflectance was reduced under all 
three stress conditions as compared with the control (Fig. 1). 
The overall reduced reflectance under water deficit is consist
ent with findings from field studies in wheat, where spectros
copy measurements were taken ∼1 m above the canopy 
(Bandyopadhyay et al., 2014; EI-Hendawy et al., 2017). In 
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contrast, a greenhouse study by Schepers et al. (1996) reported 
an increase in NIR reflectance under drought. Notably, their 
measurements were taken at the leaf level, unlike the canopy- 
level measurements in the previous studies—a distinction that 
may account for the discrepancy. At the leaf level, drought- 
induced changes in plant water status (Fig. 1) can alter the 
intercellular air spaces in leaf tissues, causing more microcav
ities between cell walls. This creates more interfaces, leading 
to enhanced NIR reflectance (Knipling, 1970; Schepers 
et al., 1996). In contrast, at the canopy level, the NIR spectral 
response is strongly influenced by the leaf area index 
(Jacquemoud et al., 2009). The decline in NIR reflectance ob
served in our review, as well as in the studies by 
Bandyopadhyay et al. (2014) and El-Hendawy et al. (2017), is 
likely to be due to reduced leaf area and canopy cover under 
drought stress (Fig. 1). Nevertheless, spectral reflectance can 
be affected by confounding factors such as weather and soil 
conditions. As shown in Fig. 2B, three out of four samples in 
2020 demonstrated increased or unchanged reflectance under 
drought compared with the control. The combined effect of 
annual weather patterns, preceding crops, and genotypes could 
alter the reflectance. To accurately isolate the impact of these 
factors, well-controlled and carefully designed experiments 
are required in future research.

Similarly, nitrogen deficiency also led to decreased NIR 
reflectance, probably due to reduced plant growth and 
smaller leaf size under nutrient-limited conditions (Fig. 1). 

Additionally, nitrogen deficiency is often associated with accel
erated leaf senescence (Fig. 1), which can further reduce NIR 
reflectance due to degradation of cell walls (Knipling, 1970). 
These findings align with previous observations in corn (Clay 
et al., 2006; Wang et al., 2011) and wheat (Ranjan et al., 
2012; Devadas et al., 2015). Under combined drought and ni
trogen stress, the average reduction in NIR reflectance ap
peared to be the sum of reductions observed under each 
individual stress (Fig. 1), suggesting a potential additive effect.

Shortwave infrared spectral region

A clear pattern in the SWIR region could not be established 
due to the high variability and limited sample size (i.e. only 
four samples across three species). However, previous studies 
have reported that SWIR reflectance generally increases under 
individual drought (Bandyopadhyay et al., 2014; El-Hendawy 
et al., 2017) and nitrogen deficiency conditions (Ranjan et al., 
2012), which is consistent with our findings for the two wheat 
samples (Fig. 2A). The other two samples also exhibited a slight 
increase in SWIR reflectance under drought stress (Fig. 2A). 
This region is known for its water absorption bands at wave
lengths such as 1200, 1450, 1930, and 2500 nm (Knipling, 
1970; Curran, 1989). Drought-induced reductions in plant 
water status (Fig. 1) are likely to be a primary factor contribut
ing to the increased SWIR reflectance. In addition to water ab
sorption bands, the SWIR region also includes absorption 

Fig. 1. Average spectral reflectance curves and physiological responses under combined drought and nitrogen (N) deficiency stress. Spectral data were 
averaged across seven species—celery, maize, sugar beet, wheat, and three tree species (sycamore, sweetgum, and loblolly pine) (n = 21). Vertical bars 
indicate 1 SD. Overlapping circles summarize common trends in physiological traits: a downward arrow indicates a decrease, an upward arrow an increase, 
no arrow (with cited studies) indicates no change, and a question mark denotes a lack of available studies. This summary is based on 26 reviewed papers, 
most of which examined combined drought and N deficiency stress. The trends shown in the figure reflect the majority consensus among studies. An asterisk 
(*) indicates an equal number of studies reporting opposite trends. Circles shaded in different colors represent stress types, i.e. drought stress, nitrogen 
stress, and combined stress. Studies cited in those circles are as follows: 1(Boussadia et al., 2010), 2(Caine et al., 2024), 3(Colovic et al., 2022), 4(Corti et al., 
2017), 5(Ding et al., 2005 ), 6(Dodig et al., 2019), 7(Elmetwalli and Tyler, 2020), 8(El-Shikha et al., 2007), 9(Fahad et al., 2017), 10(Ihuoma and Madramootoo, 
2020), 11(Kang et al., 2023), 12(Klem et al., 2018), 13(Kusnierek and Korsaeth, 2015), 14(Lebourgeois et al., 2012), 15(Li and Wang, 2023), 16(Pancorbo et al., 
2021), 17(Saravia et al., 2016), 18(Schepers et al., 1996), 19(Schlemmer et al., 2005), 20(Shangguan et al., 2000), 21(Shi et al., 2017), 22(Siłuch et al., 2023), 
23(Wang et al., 2011), 24(Wen et al., 2020), 25(Yang and Qin, 2023), 26(Zhao et al., 2005).
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Fig. 2. Relative spectral response (Equation 1) for all samples (A) and spectral reflectance of wheat samples (B) from a selected case study (Raya-Sereno 
et al. (2024), bottom) under drought + nitrogen deficiency combination. In the top heatmap, the y-axis lists each sample along with details on experimental 
setting (indoor versus field), spectral sensing scale (leaf versus canopy), and species. Among the 21 samples: six maize samples were derived from figures 
published in 1(Li et al., 2025), 2(Ramachandiran and Pazhanivelan, 2015), 3(Schlemmer et al., 2005), and 4(Wang et al., 2011); two wheat samples were 
derived from figures published in 5(Pancorbo et al., 2021); eight wheat samples were derived from the raw data published in 6(Raya-Sereno et al., 2024); one 
celery and one sugar beet sample were derived from figures published in 7(Siłuch et al., 2023); three tree species were derived from figures published in 
8(Gong et al., 2012). In the bottom spectral curves, each subplot indicates one wheat genotype (G1, G4) from 1 year of the experiment (2020, 2021) and with 
different preceding crops (B for barley and P for pea). The dashed curve shows the mean value of replicates, and the shaded area indicates 1 SD.
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features associated with various chemical compounds, such as 
proteins and lignin, which contain nitrogen. Key absorption 
bands occur at 1510, 1690, 1940, 2060, 2180, 2300, and 
2350 nm (Curran, 1989), reflecting the presence of organic 
molecules with C–H, N–H, and O–H bands. Since nitrogen 
deficiency often leads to reduced leaf nitrogen content 
(Fig. 1), the increased SWIR reflectance under such conditions 
may also result from reduced nitrogen-related absorption. 
Under combined drought and nitrogen deficiency, the two 
wheat samples in our review showed a greater RR in the 
1350–1700 nm range than under either stress alone (Fig. 2A). 
This suggests that co-occurring drought and nitrogen stresses 
may act additively or synergistically on wheat water and/or ni
trogen status, leading to a greater reduction in the SWIR spec
tral reflectance.

Drought + heat

Visible spectral region

While both individual and combined drought and nitrogen de
ficiency led to increased VIS reflectance, this pattern did not 
hold for the drought + heat combination. In the latter case, 
some samples showed a slight increase in VIS reflectance, but 
most exhibited a reduction under individual drought or heat 
stress (Fig. 4A). These contrasting patterns may be attributed 
to the use of stress-tolerant genotypes in studies involving com
bined drought and heat stress. Most drought + nitrogen defi
ciency studies were field based and involved a single 
genotype with unreported stress tolerance, whereas the 
drought + heat studies were predominantly conducted indoors 
and intentionally compared genotypes with varying stress tol
erance. For example, Couture et al. (2015) used milkweed 
seeds from northern and southern populations and observed 
distinct trait responses to experimental treatments. The spectral 
reflectances of these populations are summarized in Fig. 4B, 
where the zoomed-in regions highlight subtle yet noticeable 
differences between northern and southern groups. Lobos 
et al. (2019) also reported genotypic differences in response 
to drought and heat. These inherent variations in stress toler
ance may help explain the diverse VIS reflectance patterns ob
served in our synthesis. Additionally, environmental factors 
may also contribute to these contrasting patterns. In particular, 
when comparing maize samples from greenhouse studies under 
drought + nitrogen deficiency versus drought + heat stress, the 
day/night temperatures maintained in each greenhouse were 
different. These temperature variations could interactively in
fluence crop spectral responses to drought conditions.

Heat stress is known to impair PSII activity and reduce 
photosynthetic pigments (Fig. 3), typically resulting in in
creased VIS reflectance. However, this pattern may not apply 
to heat-tolerant genotypes. As shown in Lobos et al. (2019), 
two groups of blueberry cultivars showed contrasting spectral 
responses in the VIS region: one exhibited higher reflectance 

under heat stress compared with the control, while the other dis
played slightly lower reflectance (Fig. 4A). In Bheemanahalli 
et al. (2022), two maize genotypes exhibited opposite RRs in 
the VIS region under heat stress—one positive and the other 
negative (Fig. 4A). Similarly, Park et al. (2021) observed that 
heat-resistant ginseng varieties maintained similar VIS reflect
ance after heat exposure, whereas susceptible varieties displayed 
increased reflectance. Zhou et al. (2015) further found that heat 
stress increased chlorophyll content in the heat-tolerant tomato 
groups but reduced it in the heat-sensitive groups. One pro
posed mechanism for heat tolerance is the accumulation of an
thocyanins (Fig. 3), which are water-soluble vacuolar 
pigments that strongly absorb light at ∼550±15 nm (Gitelson 
et al., 2001). In our synthesis, blueberry plants showed a slight 
positive response near 550 nm, whereas milkweed exhibited a 
significantly negative response, potentially reflecting differences 
in anthocyanin content and heat tolerance (Fig. 4A).

Overall, our synthesis suggests that genotypic variation in 
stress tolerance can be detected through spectral reflectance. 
Under combined drought and heat stress, plant responses be
came more complex. Carob trees and maize showed positive 
RRs, while blueberry and milkweed exhibited negative re
sponses (Fig. 4A). Notably, maize and carob trees displayed op
posite response directions under combined stress compared 
with individual drought or heat. This suggests that these species 
may have unique responsive mechanisms under combined 
stress that are not simply additive from the responses to each 
stress alone.

Near infrared spectral region

Although less pronounced than the pattern observed under the 
drought + nitrogen deficiency combination, the NIR spectral 
reflectance was generally reduced under stress conditions 
(Fig. 3). Moreover, varying levels of stress tolerance can lead 
to differences in spectral responses. For example, a maize sam
ple in Bheemanahalli et al. (2022) showed a significant negative 
response under drought (Fig. 4A). This particular sample be
longed to a genotype that appeared more drought tolerant 
than the other genotype studied in the same research. 
Although the exact mechanisms responsible for the reduction 
in NIR reflectance remain unclear, the spectral evidence sug
gests possible drought tolerance mechanisms related to leaf 
structure. In our synthesis, heat stress slightly increased NIR re
flectance in blueberry, potentially due to dehydration-induced 
microcavities forming between cell walls (Knipling, 1970). In 
contrast, the other three species showed decreased NIR re
flectance, possibly resulting from cell wall degradation as leaves 
aged—a response consistent with the acceleration of leaf senes
cence under heat stress (Fig. 3). Although NIR reflectance 
under heat stress varies across species, these differences high
light the potential of spectroscopy as a tool for evaluating stress 
resistance. When drought and heat were combined, the aver
age NIR reflectance was nearly identical to that under control 
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conditions (Fig. 3), suggesting a non-additive effect of the two 
stresses on the NIR region. For example, in maize, both 
drought and heat stress individually led to negative RRs in 
the NIR region (Fig. 4A). If their effects were additive, a 
more pronounced negative response would be expected under 
combined stress. However, the observed response was close to 
zero (Fig. 4A), supporting the idea of a non-additive inter
action between drought and heat in influencing NIR 
reflectance.

Shortwave infrared spectral region

Although only two plant species—blueberry and milkweed— 
had available SWIR region measurements for analysis, distinct 
spectral patterns were observed across the three stress condi
tions (Fig. 4A). In the blueberry samples, SWIR reflectance 
under drought remained similar to the control, but it increased 
under both heat stress and the combined drought + heat stress. 
Notably, one blueberry sample exhibited a reflectance ‘hot
spot’ near 1900–1950 nm under heat and combined stress 
(Fig. 4A)—an area primarily associated with water absorption 
(Fig. 3). This probably indicates dehydration in these blueberry 
samples under those stress conditions. In contrast, milkweed 
displayed the opposite trend. The samples showed positive 
RRs in the SWIR region under drought but exhibited min
imal changes under heat or combined stress. When examining 
individual milkweed populations, increased SWIR reflectance 

under drought was mainly observed in southern populations, 
suggesting greater drought sensitivity (Fig. 4B). This aligns 
well with findings from Couture et al. (2015), which indicate 
that northern populations may perform better under future cli
mate conditions with more drought events. Interestingly, at 
∼1950 nm, milkweed reflectance tended to remain unchanged 
or slightly decrease, in contrast to the positive responses ob
served in blueberry under heat and combined stress 
(Fig. 4A). These contrasting patterns suggest that blueberry 
and milkweed employ different physiological mechanisms in 
response to stress. They highlight the potential of spectral 
data to generate and support hypotheses about plant stress 
responses.

Standardized protocols for reporting data

Although not evident in the synthesis analysis, variations in ex
perimental regimes may introduce differences in the intensity 
and duration of the stress, which may further affect spectral re
sponses. For example, nitrogen fertilization has been shown to 
enhance plant growth under short-term drought but may ex
acerbate stress effects under prolonged drought conditions 
(Araus et al., 2020). To minimize such variability, we collected 
spectral data from the lowest and highest treatment levels at the 
latest sampling date or growth stage reported in each study. 
Nevertheless, this approach cannot entirely eliminate potential 
sources of error. Identical treatment levels may not induce the 

Fig. 3. Average spectral reflectance curves and physiological responses under combined drought and heat stress. Spectral data were averaged across four 
plant species—blueberry, carob tree, maize, and milkweed (n=18). Vertical bars indicate 1 SD. Overlapping circles summarize common trends in physiological 
traits: a downward arrow indicates a decrease, an upward arrow an increase, no arrow (with cited studies) indicates no change, and a question mark denotes 
a lack of available studies. This summary is based on 28 reviewed papers, most of which examined combined drought and heat stress. The trends present in 
the figure reflect the majority consensus among studies. An asterisk (*) indicates an equal number of studies reporting opposite trends. Circles shaded in 
different colors represent stress types, i.e. drought stress, heat stress, and combined stress. Studies cited in those circles are: 1(Abdelhakim et al., 2021), 
2(Akter and Islam, 2017), 3(Bheemanahalli et al., 2022), 4(Caine et al., 2024), 5(Colovic et al., 2022), 6(Corti et al., 2017), 7(Couture et al., 2015), 8(Dodig et al., 
2019), 9(Elmetwalli and Tyler, 2020), 10(Fahad et al., 2017), 11(Hassan et al., 2021), 12(Ihuoma and Madramootoo, 2020), 13(Kang et al., 2023), 14(Klem et al., 
2018), 15(Kusnierek and Korsaeth, 2015), 16(Li and Wang, 2023), 17(Osório et al., 2012), 18(Pancorbo et al., 2021 ), 19(Rezaei et al., 2015), 20(Saravia et al., 
2016), 21(Schepers et al., 1996), 22(Schlemmer et al., 2005), 23(Shi et al., 2017), 24(Siłuch et al., 2023), 25(Wang et al., 2011 ), 26(Yang and Qin, 2023), 27(Zhou 
et al., 2015), 28(Zhou et al., 2017).
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Fig. 4. Relative spectral response (Equation 1) for all samples (A) and spectral reflectance of milkweed samples (B) from a selected case study (Couture et al., 
2015, bottom) under drought + heat combination. In the top heatmap, the y-axis lists each sample along with details on experimental setting (indoor versus 
field), spectral sensing scale (leaf versus canopy), and species. Among the 18 samples: five blueberry samples were derived from figures published in 1(Lobos 
et al., 2019); 10 milkweed samples were derived from the open-source platform 2EcoSIS. (https://ecosis.org/package/common-milkweed-leaf-responses- 
to-water-stress-and-elevated-temperature); one tree sample was derived from the figure published in 3(Osório et al., 2012); two maize samples were derived 
from figures published in 4(Bheemanahalli et al., 2022). In the bottom spectral curves, each subplot indicates one milkweed population (BFS, CED, KMP, 
MWH, and TRU) from either northern or southern regions. The dashed curve indicates the mean value of replicates, and the shaded area indicates 1 SD. For 
clarity, the zoomed-in plots only show the mean value of the reflectance.
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same degree of physiological stress across different studies due 
to varying experimental conditions. Environmental factors 
such as local climate and soil conditions may also confound 
spectral responses (Kissoudis et al., 2014; Akter and Islam, 
2017). For example, if a drought treatment is applied under 
lower ambient temperatures in one study compared with an
other, differences in spectral reflectance may result from tem
perature effects rather than drought alone.

These uncertainty factors underscore the need for improved 
protocols in experimental design and standardized data presenta
tion in scientific publications. Publications should include de
tailed ancillary data along with spectral measurements, such as 
plant growth stages, ambient weather conditions, sensor specifi
cations, and the scale of sensing (leaf or canopy). Furthermore, 
the reporting of spectral data must be standardized. Our review 
showed that <50% of the identified studies provided average 
spectral curves or raw spectral data for each treatment condition. 
Some studies only reported a few vegetation indices, despite 
having continuous spectral measurements, while others focused 
primarily on estimating plant traits under stress conditions with
out discussing spectral behaviors or disclosing the spectral data. 
To advance this field, we encourage researchers to share raw 
spectral data through open repositories such as EcoSIS. If neces
sary, a new data platform can be developed specifically to host 
plant spectral data under individual and combined stresses.

The role of spectroscopy in enhancing plant 
resilience to complex stress conditions

While the spectral responses observed are often case and species 
specific, this review nonetheless provides valuable insights into 
how plant stress responses may be reflected in different spectral 
regions. Most importantly, our synthesis underscores the po
tential of spectroscopy as a tool for studying plant stress resili
ence, as discussed in the following sections.

Driving hypothesis

In this era of rapid global climate change, developing broad- 
spectrum stress-tolerant plant varieties is vital for sustainable 
development. Advancements in transcriptomic, proteomic, 
and metabolic technologies have improved the understanding 
of the mechanisms underlying plant responses to combined 
stresses (Atkinson and Urwin, 2012; Pandey et al., 2017; 
Zhang and Sonnewald, 2017; Nawaz et al., 2023). These ad
vancements have also facilitated the identification of breeding 
targets for developing broad-spectrum stress tolerance. 
Despite the growing understanding of the unique and shared 
plant responses to individual and combined stresses, many re
main unknown due to the complexity of combined stresses. 
Although spectroscopy alone cannot directly uncover these 
mechanisms—since it captures the integrative impacts of 
stress—it can be useful in hypothesis generation and validation. 
For example, leaf chlorophyll content, which is closely linked 

to photosynthesis, is strongly associated with the VIS spectral 
region at ∼430, 460, 640, and 660 nm (Curran, 1989). 
Observing plant VIS spectral features under individual and 
combined stresses allows us to formulate hypotheses about 
photosynthetic responses to different stress conditions. As ob
served in the synthesis analysis, wheat subjected to combined 
drought and nitrogen deficiency exhibited a greater magnitude 
of RR in the SWIR region than those experiencing either 
stress alone (Fig. 2). Given the strong association between 
the SWIR region and water absorption, this observation sug
gests a hypothesis that combined drought and nitrogen defi
ciency may synergistically impact wheat leaf water content. 
Additionally, the speed and efficiency of spectroscopy allow 
for the tracking of diurnal and seasonal dynamics in plant spec
tral responses. This capability is particularly valuable because 
the effects of combined stress on plants vary across different 
growth stages (Pandey et al., 2015). Continuous monitoring 
of spectral reflectance under combined stress conditions allows 
us to hypothesize about stage-specific stress effects and identify 
the most vulnerable growth stages for each plant species.

Genotype selection

When selecting genotypes for broad-spectrum stress tolerance, it 
is not enough to simply identify those that can tolerate or survive 
stress conditions—it is also important to select genotypes that 
can maintain high yields (Atkinson and Urwin, 2012). Yield 
and its component traits are integrative in nature since they in
tegrate plant performance over time (Araus et al., 2023). 
Conventional methods to measure these traits are often destruc
tive and time-consuming. Spectroscopy offers a valuable, 
non-destructive alternative for estimating yield and yield com
ponents, helping to accelerate the selection of elite genotypes 
with broad-spectrum stress tolerance and high yield potential. 
Another direction is to use spectroscopy directly by treating 
plant spectral signatures as a unique trait or breeding target. 
Since spectroscopy provides an integrative measurement of plant 
performance under stress, using the full spectrum may be more 
effective than estimating plant traits for selecting elite genotypes 
(Kothari and Schweiger, 2022). In ecology, the concept of ‘op
tical types’ has been proposed to optically distinguish functional 
plant types based on their spectral properties (Ustin and Gamon, 
2010). This concept could be adapted for selecting genotypes 
with broad-spectrum stress tolerance. Positioning genotypes 
with different stress tolerances in the multidimensional spectral 
space may open up a new perspective on genotype selection. 
Advanced knowledge on how plant spectral signatures relate 
to stress tolerance is critical for this pursuit.

Stress detection

Increasing plant resistance to combined stress conditions can be 
achieved through breeding and engineering resilient plants, as 
well as through adaptive management practices. From the 
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management perspective, the ability to distinguish between 
combined and individual stress events is crucial for precision 
management. For example, accurately differentiating between 
water stress, nutrient deficiency, and their combined effects 
could optimize fertigation systems that apply water and nutrient 
together. Several studies have explored the use of spectroscopy 
technology to distinguish between drought, nitrogen defi
ciency, and their combination. Karimi et al. (2005) identified a 
set of narrow spectral wavebands for the discrimination of nitro
gen and water stress in corn. Kusnierek and Korsaeth (2015)
used principal component analysis (PCA) to separate nitrogen 
and water treatments in spring wheat, with results showing 
that the first PCA component was more related to water treat
ment, while the second component correlated more with nitro
gen fertilizer. Similarly, Elmetwalli and Tyler (2020) used 
penalized linear discriminant analysis to distinguish water and ni
trogen deficiency stress from hyperspectral data (350–1050 nm), 
achieving promising results, with a misclassification rate of 0.24. 
Additionally, Siłuch et al. (2023) reported high accuracy using a 
random forest model to distinguish between different nitrogen 
supply levels under varying water availability in sugar beet 
(85% overall accuracy) and in celery (78% overall accuracy).

Other studies have focused on developing unique vegetation 
indices that can isolate individual drought or nitrogen deficiency 
stress. For example, in El-Shikha et al. (2007) and Pancorbo et al. 
(2021), the canopy chlorophyll content index (CCCI) was found 
to be highly sensitive to nitrogen stress but insensitive to water 
stress. On the other hand, the water deficit index (WDI) has 
shown potential in detecting crop water stress by effectively differ
entiating between varying levels of water treatments. Masseroni 
et al. (2017) found that the crop water stress index (CWSI) could 
detect plant water status without dependence on plant nitrogen 
conditions. Ihuoma and Madramootoo (2020) identified several 
indices—PRI550 (photochemical reflectance index centered at 
550 nm), PRInorm (normalized PRI), and WI (water index)— 
as being the most sensitive to water stress. Conversely, the 
RDVI (renormalized difference vegetation index), PRInorm, 
and TCARI (transformed chlorophyll absorption in reflectance 
index) correlated well with nitrogen stress indicators. Recently, 
Li et al. (2025) optimized a new nitrogen stress indicator, the ratio 
between the normalized red edge index (NDRE) and the nor
malized difference vegetation index (NDVI). This new indicator 
successfully minimized the confounding influence of soil water 
variability. Altogether, these findings demonstrated the potential 
of spectroscopy for distinguishing between individual and com
bined drought and nitrogen deficiency. Future studies should in
vestigate how spectroscopy can be applied to detect or distinguish 
other common stress combinations, such as drought and heat 
stress, and drought and biotic stress.

Calls to action

Although there has been increasing attention on studying plant 
molecular and physiological responses to combined stress 

conditions, this review highlights a lack of research on how re
flectance spectroscopy can be used to understand these re
sponses, as evident by the limited number of identified 
papers. This is the primary limitation of our review and con
strains the generalizability of the observed spectral patterns. 
Findings presented in this study should be interpreted with 
caution, as the spectral responses reported here may not univer
sally apply across different plant species, genotypes, or environ
mental settings. Additionally, this review focused on two stress 
combinations occurring simultaneously, as these are the most 
studied in publications. However, in natural conditions, plants 
can experience three or more abiotic and/or biotic stressors 
simultaneously or sequentially—what Zandalinas et al. (2021)
referred to as ‘multifactorial stress combination’. Further, se
quential stresses often cause priming effects that prepare plants 
to perform better under future stress (Zhang and Sonnewald, 
2017; Fu et al., 2022), leading to more complex and dynamic 
variations in plant spectral responses. Given these gaps in the 
literature, we call for more research into multiple stress combi
nations, both simultaneous and sequential, with a particular fo
cus on the role of reflectance spectroscopy.

Experimental setting

Investigating combined stress conditions in natural settings or 
at least in conditions that closely mimic the natural environ
ment is crucial yet challenging. As shown in this review, 
most studies on combined drought and heat stress were con
ducted indoors, possibly due to the difficulty of regulating 
the temperature in open-field conditions. Controlled environ
ments are advantageous for studying plant responses to particu
lar stresses because they offer better control of stress intensity, 
timing, and duration, as well as other environmental factors. 
However, these settings often limit plants to certain growth 
conditions, such as confining plants to a limited soil volume 
(Araus et al., 2023), which can confound the effects of com
bined stresses. If experiments must be conducted in controlled 
environments, they should be carefully designed to closely rep
licate field conditions, particularly in terms of growth media, 
stress duration and severity, timing of stress, and nutrient avail
ability (Atkinson and Urwin, 2012). Alternatively, free-air car
bon dioxide enrichment (FACE) facilities offer a promising 
solution for in-field control of certain stress factors. For ex
ample, the SoyFACE facility at the University of Illinois at 
Urbana–Champaign (IL, USA) allows altering of climate con
ditions including atmospheric CO2 and O3 levels, air tempera
ture, and soil water availability (Ainsworth et al., 2004; 
Bernacchi et al., 2006). This facility has been well documented 
in the literature for investigating interactions between rising at
mospheric CO2 and O3 levels (Eastburn et al., 2010), rising 
CO2 and warming temperature (Bagley et al., 2015), as well 
as elevated CO2 and intensified drought (Gray et al., 2016). 
Future studies are encouraged to use these FACE facilities to 
explore more stress combinations. With the open-field 
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settings, spectroscopy sensors mounted on remote sensing plat
forms, such as satellites, UAVs, and cable-suspended systems, 
can be used to collect spectral data more quickly and efficiently.

Integrated modeling

Implementing various stress combinations in controlled or field 
experiments can be impractical. An alternative approach is to 
use process-based models, which are mathematical representa
tions of the physical world and grounded in decades of obser
vations and experiments (Read et al., 2019). For example, crop 
growth models (CGMs) simulate crop growth and develop
ment under pre-defined weather, soil, and management condi
tions (Hoogenboom et al., 2004). By adjusting input 
parameters, CGMs can simulate plant phenology and growth 
patterns under different stresses such as drought and tempera
ture stress (Rezaei et al., 2015; Araus et al., 2023; Leisner 
et al., 2023). However, due to constraints in parameter settings 
and the complexity of crop–environment interactions, CGMs 
have limited capability to simulate the impacts of many stress 
conditions such as biotic stress factors. To better simulate 
crop growth under diverse stressors, a promising strategy is to 
couple CGM with other holistic models, such as climate mod
els (Rötter et al., 2011) and pest and disease models (Donatelli 
et al., 2017). Skelsey et al. (2016) proved this strategy by coup
ling a CGM with an aerobiological model and an infection risk 
model to assess the impact of future climate conditions on po
tato late blight risks.

From a spectroscopy perspective, radiative transfer models 
(RTMs), which simulate light interactions with plants 
(Jacquemoud et al., 2009), can be integrated with CGMs using 
their shared variables. This integration efficiently connects the 
plant spectral signature with its dynamic growth, as well as the 
environmental conditions. A successful example is demonstrated 
by Chen et al. (2022), where a CGM was integrated with an 
RTM for the estimation of crop traits. Another benefit of inte
grating RTMs, especially leaf-level models such as PROSPECT 
(Jacquemoud and Baret, 1990), is their ability to simulate not 
only reflectance, but also transmittance and absorptance. 
While this review has focused primarily on reflectance spectros
copy, other optical properties such as transmittance and absorp
tion can offer complementary insights into plant responses to 
environmental stress. For example, Chen et al. (2023) proposed 
transmittance-based vegetation indices that were less influenced 
by confounding leaf traits compared with traditional reflectance- 
based indices when estimating carotenoids, leaf water content, 
and leaf mass per area. Although measuring transmittance and 
absorptance typically requires more complex instruments (e.g. 
spectrophotometers with integrating spheres), RTMs provide 
a promising alternative for simulating and exploring these prop
erties. Future studies should consider incorporating transmit
tance and absorptance data to better isolate the physiological 
mechanisms underlying spectral responses to combined stress 
conditions.

While process-based models offer a robust framework for 
understanding underlying mechanisms, they often require 
complex and time-consuming calibration processes (Chang 
et al., 2023). In contrast, statistical and empirical data-driven 
models, such as machine learning and deep learning, have be
come increasingly popular due to their efficiency and accuracy. 
These empirical models excel at learning from observational 
data to identify driving factors affecting crop growth that might 
not be captured by process-based models (Rezaei et al., 2022). 
Integrating process-based models with these empirical models 
can enhance their complementary strengths by combining 
mechanistic insights with the capacity to uncover new patterns 
from data (Li et al., 2023, 2024). Collectively, such an inte
grated approach may open up the way for an improved mech
anistic understanding of multistress interactions, as well as 
enhanced modeling efficiency. Yet, achieving this comprehen
sive integration, from stress-driving factors to plant responses 
and from process-based to data-driven models, will require in
tensive collaboration among modelers, engineers, climatolo
gists, agronomists, and plant pathologists in future research.

Sensor synergy

A significant limitation of reflectance spectroscopy is that spec
tral changes often reflect alterations in plant physiological states 
that are collectively influenced by multiple stress factors. In nat
ural conditions, where the specific type of stress may not be 
known in advance or multiple stresses occur simultaneously, 
spectroscopy alone cannot provide sufficient information to 
identify or disentangle the stresses (Jackson, 1986). To address 
this limitation, a multisensor synergy might offer a more effect
ive solution for deciphering complex responses under com
bined stress conditions. Although this review focuses on 
reflectance spectroscopy, we acknowledge the value of other 
sensing technologies, including thermal imaging, chlorophyll 
fluorescence, and light detection and ranging (LiDAR), which 
can complement spectral data to provide a more holistic view 
of plant stress responses.

Thermal sensing measures canopy temperature. Based on 
the leaf energy balance equation, leaf or canopy temperature 
is related to the plant transpiration rate and thus is a function 
of stomatal conductance (Gerhards et al., 2019). This sensing 
technique has been found in assessing plant water stress 
(Gerhards et al., 2019). Chl a fluorescence, which is closely re
lated to photosynthetic function, is another powerful tool for 
stress detection (Stirbet et al., 2018). It has proven useful for 
evaluating tomato growth performance under combined water 
deficit and salinity stress (Kautz et al., 2014) and under com
bined waterlogging and salinity stress (Zhou et al., 2022). 
LiDAR, by emitting laser pulses that can partially penetrate 
crop canopies through foliage gaps, provides valuable plant 
structural information beneath the canopy. This makes it espe
cially valuable for detecting structural changes linked to stress 
such as drought (Su et al., 2019; Mulugeta Aneley et al., 2023) 
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and salinity (Zhang et al., 2023). Given their complementary 
benefits, integrating different sensors holds promise for provid
ing a more detailed and accurate assessment of plant responses 
to complex stress conditions.

There are two common approaches to combine different 
sensors: data-level and feature-level fusion. At the data level, 
raw data from multiple sensors is directly combined before fur
ther analysis. For example, Gu et al. (2024) combined 
UAV-derived LiDAR point clouds and multispectral images 
to form a 3D multispectral point cloud, from which the photo
synthetic traits of wheat were derived for stress monitoring. At 
the feature level, key variables such as vegetation indices are 
first derived from individual sensors and then integrated for fur
ther analysis. For example, Pancorbo et al. (2021) suggested that 
simultaneously measuring VNIR reflectance and thermal in
formation can improve water and nitrogen management strat
egies. Their approach used CCCI derived from VNIR 
reflectance to distinguish nitrogen treatment levels while min
imizing the confounding effects of soil water status. 
Conversely, WDI calculated using both VNIR and thermal 
data showed stronger sensitivity to water status than nitrogen 
status. Caine et al. (2024) enhanced abiotic stress monitoring 
by integrating thermal sensing with reflectance-based indices 
to improve transpiration modeling and water flux estimation. 
Finally, incorporating other data sources, such as soil proper
ties, weather variables, and management history, could further 
enhance our ability to identify the driving factors of plant stress.

Conclusion

This review presents a new perspective on studying plant re
sponses to combined stresses through reflectance spectroscopy. 
The synthesis results showed that plants had different spectral 
responses to individual and combined stresses, indicating the 
potential to distinguish between these stresses. It is also ob
served that plant spectral responses to combined stress differ 
from those to individual stresses, and these differences were af
fected by plant species, genotypes, spectral sensing scales, and 
potentially other experimental factors. These findings highlight 
the potential of reflectance spectroscopy as a tool to help im
prove plant resilience in a changing climate by driving new hy
potheses, facilitating breeding programs, and refining precision 
stress management practices. Nevertheless, the limited number 
of studies in this area underscores the need for continued 
research. Future advancements will require comprehensive 
approaches, including improved experimental designs, standar
dized data presentation protocols, advanced modeling meth
ods, and integrated sensing strategies, to fully unlock the 
potential of reflectance spectroscopy in deciphering plant re
sponses to combined stresses.
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