2019 RIPE Highly Cited Researchers headshots

RIPE researchers among 2019’s most influential scientists

This year RIPE has four team members recognized as Highly Cited Researchers by the Web of Science group.

Representatives from the University of Illinois at Urbana-Champaign and the Bill & Melinda Gates Foundation breaking ground

Breaking ground on phenotyping facility at the University of Illinois Research Park

Representatives from Illinois and the Gates Foundation broke ground on a state-of-the-art phenotyping facility.

Amanda De Souza in a cassava field

Scientists find ways to improve cassava, a ‘crop of inequality’ featured at Goalkeepers

A new study has identified opportunities to increase the yields of the staple root crop cassava.

Jim Moroney

Missing link in algal photosynthesis found, offers opportunity to improve crop yields

Our team discovered a missing link in the photosynthetic process of green algae that could help boost crop productivity.

Scientific image from the paper.

Improved model could help scientists better predict crop yield, climate change effects

Our team created a computer model of how microscopic leaf pores open in response to light to create better virtual plants.


Picture of team

Scientists stack algorithms to improve predictions of yield-boosting crop traits

RIPE researchers have stacked together six algorithms to more accurately predict high-yielding crop traits. 

Scientist measuring a plant using spectral analysis.

New technology allows scientists to measure photosynthesis much more quickly

A new method can quickly capture improvements to plants' natural capacity to harvest energy from the sun.

Stephen P. Long portrait in a greenhouse.

Long elected to the National Academy of Sciences

University of Illinois crop sciences and plant biology professor Stephen P. Long is one of 100 new members elected to the National Academy of Sciences.

Three researchers stand in field trial.

Scientists engineer shortcut for photosynthetic glitch, boost crop growth by 40 percent

The RIPE project has engineered a shortcut for photorespiration—an energy-expensive process—and increased crop productivity by 40 percent.