Skip to main content

Scientists boost crop production by 47 percent by speeding up photorespiration


Plants such as soybeans and wheat waste between 20 and 50 percent of their energy recycling toxic chemicals created when the enzyme Rubisco—the most prevalent enzyme in the world—grabs oxygen molecules instead of carbon dioxide molecules. Increasing production of a common, naturally occurring protein in plant leaves could boost the yields of major food crops by almost 50 percent, according to a new study led by scientists at the University of Essex published today in Plant Biotechnology Journal.

This work is part of the international research project Realizing Increased Photosynthetic Efficiency (RIPE) that is supported by Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research, and U.K. Department for International Development.

In this study, the team engineered a model crop to overexpress a native protein that is involved in the recycling process called photorespiration. Over two years of field trials, they found that increasing the H-protein in the plants’ leaves increases production 27 to 47 percent. However, increasing this protein throughout the plant stunts growth and metabolism, resulting in four-week-old plants that are half the size of their unaltered counterparts.

 

Two scientists pictured amongst small plants in a field trial.
Patricia Lopez-Calcagno (left) and Kenny Brown (right) evaluate a field trial that helped prove that increasing a protein in the leaves of crops can increase production by nearly 50 percent. Photo by Claire Benjamin/RIPE

 

“Plant scientists have traditionally used promoters that express proteins at high levels throughout the plant, and there are many examples where this has worked really well,” said the lead author Patricia Lopez-Calcagno, a senior research officer at Essex. “But for the H-protein, we showed that more is not always better demonstrating that when we translate this method to other crop plants, we will need to tune the changes in protein to the right levels in the right tissues.”

Previous studies increased H-protein levels in Arabidopsis, a small model plant used in laboratory experiments. This is the first time that the H-protein has been evaluated in a crop in real-world growing conditions. The team used tobacco, widely considered the lab rat of plant biology because it is easy to genetically engineer and can be quickly grown and tested in outdoor field trials. Once a modification has been proven to be effective in tobacco, the same approach can be applied to food crops that are needed to feed our growing population.

 

Aerial view of field trial.
Aerial view of the 2017 field trial that showed that fine-tuning the increased expression of a protein can boost production by nearly 50 percent. Photo was taken with a drone by Beau Barber

 

“The reality is that as growing season temperatures continue to increase, the yield hit caused by photorespiration will also increase,” said co-author Paul South, a USDA-ARS postdoctoral researcher in the Carl R. Woese Institute for Genomic Biology at the University of Illinois. “If we can translate this discovery to food crops, we can equip farmers with resilient plants capable of producing more food despite increasing temperature stress.”

Next, the team plans to increase the levels of this naturally occurring protein in soybeans, cowpeas (black-eyed peas), and cassava, a tropical root crop that is a staple for more than a billion people around the world. Their goal is to increase the yields and opportunities for farmers worldwide, particularly smallholder farmers in Sub-Saharan Africa and Southeast Asia.

To further increase yields, the team plans to combine this trait with others developed by the RIPE project, including a method reported in Science that boosted production by 20 percent by helping plants adapt to fluctuating light levels more quickly.

“Improvements obtained with the individual trait described here, brings us one step closer to meeting the imminent food demands of 2050—Additionally, by combining this trait with other successful traits in RIPE, we can make the yield gains needed to feed this century’s growing population,” said Principal Investigator Christine Raines, a professor of plant molecular physiology at Essex. “We are committed to developing these sustainable technologies as quickly as possible and ensuring that the farmers and communities who need them most have global access.”


By: Claire Benjamin || RIPE Project

Go to newswire story


RIPE OBJECTIVES

RuBP Regeneration

IN THE NEWS

European Scientist: Scientists increase crop production by 47%

Modern Farmer: Scientists may found a way to increase crop yield by a bonkers 20%

Smithsonian Magazine:  New technique could supercharge crop production 

Popular Science: Scientists tweak plant genes to enhance photosynthesis and increase crop yields 

Peoria Public Radio (WCBU 89.9): Genetically Modifying Photosynthesis Can Increase Crop Yields

Arizona Daily Sun: Scientists modify plants, making them use sunlight better

Vice: This Scientific Breakthrough Could Completely Change the Way the World Grows Food

Christian Science Monitor: Feeding the world? Did scientists just figure out how to grow more food?

Social News.XYZ: More efficient use of sunlight can improve crop yields

BBC: Genetic breakthrough: crops use more sunlight to grow

Science:  Engineered crops could have made it in the shade

Futurism: Engineering nature: how improved photosynthesis could feed the world

Detroit News: Modified plants offer food for thought 

New York Times: With an eye on hunger, scientists see promises in genetic tinkering of plants

Gazette Standard: Essex University scientists on the way to feeding the world

Science:  How turning off a plant's sunshield can grow bigger crops

TheScientist: Genetic Modification Improves Photosynthetic Efficiency

The Guardian: Plants modified to boost photosynthesis produce greater yields, study shows

San Francisco Chronicle: Scientists modify plants, making them use sunlight better

Los Angeles Times: Scientists aim to feed the world by boosting photosynthesis

International Business Times: Genetically Modified Crops: Gene Tweaking Boosts Photosynthesis Efficiency To Increase Crop Yield

Tech Times:  Scientists modify photosynthesis to produce more crops

MIT Technology Review: Super-Fast-Growing GM Plants Could Yield the Next Green Revolution

Voice of America Learning English:  Supercharged Plants May Mean More Crop Production

Talking Biotech Podcast:  059 Engineering Efficiency in Photosynthesis

El Páis: Arreglar las pifias de la proteína más abundante del mundo aumenta un 50% las cosechas

F1000Prime: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection

WILL: Study: enhanced photosynthesis increases yield up to 20 percent

Science & Scholarship in Poland: 15 percent higher yields through improved photosynthesis in the shade

WCIA: UI researchers make crop yield breakthrough

KPCC: How to increase food production? Improve photosynthesis

Cell Systems:Tinkering with photosynthesis 

DI: University scientists become the first to genetically modify photosynthesis

Nature: Photosynthesis gets boosts 

The Hindu: Tweaking photosynthesis to increase crop yield

Stackyard: Scientists Boost Crop Production by 47 Per Cent

DI: Top 10 moments of the semester

ScienceDaily: Scientists boost crop production by 47 percent by speeding up photorespiration

Nature: Plant science: Crops on the fast track for light

Next Big Future: Crop production increased by 47 percent by speeding up photorespiration

Privacy Policy