Relaxing Photoprotection

Although light is necessary for photosynthesis, damage can occur when leaves are exposed to high light intensity. To avoid this, plants have developed several photo-protective mechanisms. Non-photochemical quenching (NPQ) is one of those mechanisms, which allows excessive absorbed irradiance to be dissipated as heat. NPQ turns on rapidly at high light intensity, however it turns off more slowly upon a return to limiting irradiance. As a result, the quantum yield of photosynthesis is temporarily reduced, while NPQ adjusts to the lower light intensity. The RIPE project tries to speed up the relaxation of NPQ after a transition from high to low light intensity, thereby allowing a faster recovery of photosynthetic quantum yield.

Cynthia Amstutz
Steven Burgess headshot
Headshot of Sarah Hutchinson
Wanne Kromdijk
Steve Long
Kris Niyogi
Dhruv Patel
Big 10

Illinois biologists power up plant productivity

The BTN LiveBIG campaign is more than school or sports, it is the stories and the impact of innovation, research, and inspiration from all over the conference to make you proud to be apart of the Big Ten. 

By: BTN LiveBIG Campaign

Soybean field at sunset

To feed the world, improve photosynthesis

By reworking the basic metabolism of crops, plant scientists hope to forestall devastating food shortages.


By: Katherine Bourzac || MIT Technology Review 


The 12 key science moments of 2016

Our panel of leading scientists pick the most significant discoveries and developments of the year – from the Zika virus to the planet Proxima B – and a surprising secret of marriage.


By: Prof Sue Hartley, Director, York Environmental Sustainability Institute, University of York || The Guardian


Scientists engineer crops to conserve water, resist drought

As reported in Nature Communications, RIPE has improved how a crop uses water by 25 percent—without compromising yield—by altering the expression of one gene.

Tapestry of Hope

Tapestry of Hope

Sweat sneaks beneath Kasia’s sunglasses as she tiptoes around the carefully organized research plots, orchestrated using GPS technology. The tiny plants reach up to grasp the sun, creating a mosaic of greens and yellows as they grow and mature, a tapestry of hope for the researchers who have cared and cultivated them.

Illustration of modified and non-modified plants.

Scientists tweak photosynthesis and boost crop yield, proving it can be done

Researchers report in the journal Science that they can increase plant productivity by boosting levels of three proteins involved in photosynthesis.